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PREFACE.

THIS work is intended for architects- and students of architec-

ture.

Within the last ten years, many books have been written upon
the mathematics of construction. Among them are several of

particular excellence. Few, however, are of a character adapted
to the specific wants of the architect. The subject is treated, by
some, in the abstract, and in a manner so diffuse and 'general as

to be useful only to instructors. In other works, where a prac-
tical application is made, the wants of the civil engineer rather

than of the architect are consulte.4. Writers of scientific books,
as well as the -public at large, have failed to appreciate the wants
of the architect. Indeed, many architects are content to forego a

knowledge of construction
; following precedent as far as pre-

cedent will lead, and, for the rest, trusting to the chances of mere

guess-work. For such, all scientific works are alike useless
;
but

there is a class of architects who, through a faulty system of edu-

cation, have failed to obtain, while students, the knowledge they
need

;
and who now have little time and less inclination to apply

themseh^es to abstract or inappropriate works, although feeling

keenly the need of some knowledge which will help them in their

daily duties.

For this class, and for students in architecture, this book is

written. In fitting it for its purpose, the course adopted has

been to present an idea at first in concrete form, and then to lead

the mind gradually to the abstract truth or first principles upon
which the idea is based. This method, or the manner in which it

is executed, may not meet the approval of all. Nevertheless, it is

hoped that those for whom the work is written may, by its help,

acquire the knowledge they need, and be enabled to solve readily

the problems arising in their professional practice.



4 PREFACE.

To adapt the work to the attainments of younger students,

the attempt has been made to present the ideas, especially in the

first chapters, in a simple manner, elaborating them to a greater
extent than is usual.

The graphical method of illustration has been employed
largely, and by its help some of the more abstruse parts of the

science of construction, it is thought, have been made plain.

Results obtained by this method have been analyzed and shown
to accord with the analytical formulas heretofore employed. In

a discussion of the relation between strength and stiffness, a

method has been developed for determining the factor of safety
in the rules for strength. Rules for carriage beams with two and
three headers are given. The subject of bridging has been dis-

cussed, and the value of this system of stiffening floors defined.

Especial attention has been given to the chapters on tubular

iron girders, rolled-iron beams, framed girders and roofs; and

these chapters, it is hoped, will be particularly acceptable to

architects.

The rules for the various timbers of floors, trussed girders,

and roof trusses, are all accompanied by practical examples
worked out in detail. Tables are given containing the dimen-

sions of floor beams and headers for all floors. These tables are

in two classes
;
one for dwellings and assembly rooms, the other

for first-class stores; and give dimensions for beams of Georgia

pine, spruce, white pine and hemlock, and for rolled-iron beams.

Immediately following the tables will be found a directory,

or digest, by which the more important formulas are so classified

that the proper one for any particular use may be discerned at a

glance.
The occurrence recently of conflagrations, resulting in serious

loss of life, has shown the necessity of using every expedient cal-

culated to render at least our public buildings less liable to

destruction by fire. To this end it is proposed to construct timber

floors solid, laying the beams in contact, so as to close the usual

spaces between the beams, and thus prevent the passage of air,

and thereby retard the flames. The strength of these solid floors

has been discussed in Article 702, and a rule been obtained for the

depth of beam or thickness of floor. By this rule the depths for

floors of various spans have been computed, and the results re-

corded in table XXI.
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Tables XXIII. to XLVI. contain a record of experiments made,

expressly for this work, upon six of our American woods. In

these experiments and in computations, the author has been as-

sisted by his son, Mr. R. F. Hatfield.

In the preparation of the work, he has had recourse to the

works of numerous writers on the strength of materials, to

whom he is under obligation, and here makes his acknowledg-
ments. The following are the works which were more particu-

larly consulted :

Baker on Beams, Columns, and Arches.

Barlow on Materials and on Construction.

Bow on Bracing.

Bow's Economics of Construction.

Campin on Iron Roofs.

Cargill's Strains upon Bridge Girders and Roof Trusses.

Clark on the Britannia and Conway Tubular Bridges.
Emerson's Principles of Mechanics.

Fairbairn on Cast and Wrought Iron.

Fenwick on the Mechanics of Construction.

Francis on the Strength of Cast-Iron Pillars.

Haswell's Engineers' and Mechanics' Pocket-Book.

Haupt on Bridge Construction.

Hodgkinson's Tredgold on the Strength of Cast-Iron.

Humber on. Strains in Girders.

Hurst's Tredgold on Carpentry.

Kirkaldy's Experiments on Wrought-Iron and Steel.

Mahan's Civil Engineering.
Mahan's Moseley's Engineering and Architecture.

Moseley's Engineering and Architecture.

Poisson's Traiie de Mecanique.
Ranken on Strains in Trusses.

Rankine's Applied Mechanics.

Robison's Mechanical Philosophy.
Rondelet sur le Dome du Pantheon Franais.

Sheilds' Strains on Structures of Ironwork.

Styffe on Iron and Steel.

Tarn on the Science of Building.
Tate on the Strength of Materials.

Tredgold's Carpentry.

Unwin on Iron Bridges and Roofs.

Weisbach's Mechanics and Engineering.
Wood on the Resistance of Materials.
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INTRODUCTION.

ART. I. The science of Construction, as the term is used

in architecture, comprehends a knowledge of the forces

tending to destroy the materials constituting a building, and

of the capacities of resistance of the materials to these forces.

2. One of the requisites of good architecture is Sta-

bility. Without this the beautiful designs of the architect

can have no lasting existence beyond the paper upon which

they are delineated.

3. The force of Gravity is inherent not only in the

contents of a building, but also in the materials of which the

building itself is constructed
;
and unless these materials

have an adequate power of resistance to this force, the safety

of the building is endangered. Hence the necessity of a

knowledge of the laws governing the force of gravity in its

action upon the several parts of a building, and of the expe-

dients to be resorted to in order to resist its action effect-

ually.

4-. It may be objected by some that this knowledge

pertains rather to building than to architecture, and that

the architect is required merely to indicate the outlines

of his plans, leaving to the builder the work of deter-

mining the arrangement and dimensions of the materials.

This objection is not well founded. Between the duties of
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the architect and those of the builder there is a well-defined

line. This may be shown by a consideration of the operation

of building as it is usually conducted. The builder is selected

generally from among those who compete for the work.

Each builder competing fixes the amount for which he is

willing to erect the building, after an examination of the plans

and specifications and an estimate of the cost of the work.

To arrive at this cost the arrangement and dimensions of the

materials must be fixed
;
and if not fixed by the plans and

specifications, in what way shall they be determined ? Shall

it be by the builder ? The builder has not yet been selected.

Shall each builder estimating be permitted to assign such di-

mensions as his caprice or cupidity shall dictate ? The evil

effect of such a course is apparent. The only proper method

is to have the arrangement and dimensions of the materials

all definitely settled by the architect in his plans and specifi-

cations.

Moreover, the necessity for a knowledge of this subject

by the architect is manifest in this, that he is constantly liable,

without this knowledge, to include in his plans such features

as the action of gravity would render impossible of produc-

tion in solid material, or which, if executed, would not pos-

sess the requisite degree of stability.

5. In considering the requisites for stability in a build-

ing, the various parts need to be taken in detail : such as

Walls, Piers, Columns, Buttresses, Foundations, Arches,

Lintels, Floors, Partitions, Posts, Girders and Roofs.

6. It is the purpose of the present work to treat

principally of those parts which are subjected to trans-

verse strains.

7. In the construction of a floor, the safety of those

who are to trust themselves upon it is the first consideration.
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8. Floors are not always made sufficiently strong.

Scarcely a year passes without its record of deaths conse-

quent upon the failure of floors upon which people should

have assembled with safety. Many floors now existing,

and not a few of those annually constructed, are deficient

in material, or have an improper arrangement of it.

9. The strength of a floor consists in the strength of its

timbers.

The dimensions of the timbers for any given floor may be

ascertained, practically, by an examination of other similar

floors which have been tried and found sufficiently strong.

But if no similar floor is found, how is the problem to be

solved ?

10. The amount of material required may be found

by constructing one or more experimental floors, and testing

them with proper weights ;
but this wrould be attended

with great expense, and probably with the loss of more time

than could be spared for the purpose.

II. There is a simple method, which is- quite ascertain

and less expensive. The chemist, from a small specimen,

makes an analysis sufficient to determine the character of

whole mines of ore or quarries of rock. So we, by proper

tests of a small piece of any building material, may deter-

mine the characteristics of ail material of that kind.

12. To obtain, then, the requisite knowledge of the

strength of floor timbers, let us adopt a piece of convenient

size as the unit of material. Let it be a piece one inch square

and one foot long in the clear between the bearings. This

we will submit to a transverse force, applied at the middle of

its length, sufficient to break it crosswise, and learn from

the result the power of resistance it possesses.

Numerous experiments of this nature have been made
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upon all the ordinary kinds of timber, stone and iron, and

the average results collected in tabular form. (See Table

XX.) A few results are here given.

13. The unit of material, when of

Hemlock, breaks with 450 pounds :

White Pine,
" "

500

Spruce,
" "

550

White Oak,
" "

650

Georgia Pine,
" "

850

Locust,
" " 1200 "

Cast-Iron " " 2100 "

These figures give the average unit of strength for these

several kinds of material, when exposed to a transverse

strain at the middle of their length.
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THE LAW OF RESISTANCE.

ART. 14. Relation between Size and Strength. Having

ascertained, by careful experiment, the power of resistance

in a unit of any given material, the next question is : What

is the existing relation between size and strength ? Is the

increase of one proportionate to that of the other ?

In two square beams of equal length, but of different

sectional area, the larger one will bear more than the

smaller. From this it appears that the resistance is, to a

certain degree at least, in proportion to the quantity of

material, or to the area of cross-section. There is an

element of strength, however, other than this, and one which

modifies the proportion very materially.

IS. Strength not aBway in Proportion to Area of

Cross-eeiioii. That the strength of any two pieces of equal

length is not always in proportion to the area of cross-sec-

tion, is shown by attempts to break two given pieces. For

example, take two beams of equal length, but of differing

area of cross-section; the one being 3 x 8, and the other

5x6 inches. The former has 24 and the latter 30 inches of

sectional area. If the strength be in proportion to the

sectional area, the weights required to break these two

pieces will be in the proportion of 24 to 30 their relative

areas of cross-section
;
but they will be found (the pieces

being placed upon edge) to be in the proportion of 24 to

the smaller piece being actually stronger than the larger !
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16. Resistance in Proportion to Area of

Preliminary to seeking the cause of this apparent want

of proportion, it will be well to show first that, under certain

conditions, the resistance of beams is directly proportional

to their area of cross-section.

Let there be twenty pieces of smooth white pine, each

one inch square, and one foot long in the clear between the

bearings. The resistance of anyone of these pieces is limited

to 500 pounds. This has been ascertained by experiment as

before stated in Art. 13.

Let four of these pieces be placed side by side upon the

bearings. The resistance of the four is evidently just four

times the resistance of one piece ;
or 4 x 500 = 2000 pounds.

Let four more pieces be placed upon the first four : the

strength of the eight amounts to 2 x 2000 = 4000 pounds.

Add four more, and the combined resistance of the twelve

pieces will be 3 x 2000 = 6000 pounds.

The resistance of four tiers of four each, or of sixteen

pieces, will be 16 x 500 = Soco pounds.

The total strength of the twenty pieces, piled up five tiers

high, will be 20 x 500 =10,000 pounds.

Thus we see that the resistance is exactly in proportion

to the amount of material used.*

17. Units may be Taken of any Given Dimensions.

In this trial we have taken as the unit of material a bar one

inch square. Wve might have taken this unit of any other

dimension, as a half, a quarter, or even a tenth of an inch

square, and, after finding by trial the strength of one of

* The truth of this proposition depends upon obtaining, in the experiment,

pieces of wood so smooth that, in being deflected by the weight, they will move

upon each other without friction
;
a condition not quite possible in practice to

obtain. This friction restrains free action, and, as a consequence, the weight

required to effect the rupture will be somewhat greater than is stated.
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these units, could have as readily known the strength of the

whole pile by merely multiplying the number of units by

the strength of one of them.

We will now consider the relation between breadth and

depth.

18. Experience Snows a Beam Stronger when Set on

Edge. One of the first lessons of experience with timber

of greater breadth than thickness, is the fact of its pos-

sessing greater strength when placed on edge than when

laid on the flat. As an example : a beam of white pine,

3x8 inches, and 10 feet long between bearings, will

require 9600 pounds to break it when set on edge ; while

three eighths of this amount, or 3600 pounds, will break it if

it be laid upon the flat. Here again, as in Art. 15, we have

a fact seemingly at variance with the one but just previously

established namely, that of the resistance being in propor-

tion to the area of cross-section. We will now investigate

the apparent anomaly.

(9. Strength IMrectly in Proportion to Breadth. First,

as to the breadth of a beam. If two beams of like size are

placed side by side, the two will resist just twice that which

one of them alone would. Three beams will resist three

times as much as one beam would. So of any number of

beams, the resistance will be in proportion directly as the

breadth.

This is found by trial to be true, whether the beams are

separate or together, solid
;
for a 6 x 8 inch beam will bear

as much, and only as much, as three beams 2x8 inches set

side by side, and, in both cases, on the edge. In other

words, when the depths and lengths are equal, a beam of six
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inches breadth will bear just three times as much as a beam

of two inches breadth, or twice as much as one of three

inches breadth.

So this fact appears established, that the resistance of

beams is directly in proportion to their breadth.

20. By Experiment Strength Iiicrcasc more Rapidly

than the Depth. In regarding the depth of beams, another

law of proportion is found. Having two beams of the same

breadth and length, but differing in depth, we find the

strength greater than in proportion to the depth. If it were

in this proportion, a beam nine inches high would bear

just three times as much as one three inches high, whereas

experiment shows it to bear much more than this.

21. Comparison of a Solid Beam with Jt Laminated

one. To test this, let there be two beams of equal length,

breadth and depth, one of them being in one solid piece

FIG. i. FIG. 2.

(Fig. 2),
while the other is made up of horizontal layers

or veneers, laid together loosely (Fig. i). Placing weights

upon these two beams, it is seen that, although they contain

a like quantity of material in cross-section, and are of equal

height, the solid beam will sustain much more weight than

the laminated one. Let the several parts of the latter beam

be connected together by glue, or other cementing material,
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and again applying weights, it will be found that it has be-

come nearly, if not quite, as strong as the beam naturally

solid.

From these results we infer that the increased strength is

due to the union of the fibres at each juncture of the hori-

zontal layers. But why does this result follow? If the

simple knitting together of the fibres is the cause, then why,

in considering the breadth, is a solid beam no stronger

than two beams, each of half the breadth, as has been

shown ?

22. Strength clue to Resistance of Fibres to Extension

and Compression. An examination of the action of the

beams under pressure in Figs, i and 2 may explain this.

The weights bending the beams make them concave on top.

In Fig. i the ends of the veneers or layers remain in vertical

planes, while, in the other case, the end of the solid beam

is inclined, and normal to the curve. It is also seen that

the upper surface in Fig. 2 is shorter than the lower one,

although the two surfaces were of the same length before

bending. This change in length has occurred during the

process of bending, and could only happen through a change
in length of the fibres constituting the beam.

In the operation of bending, one of two things must of

necessity take place : either the fibres must slide upon each

other, as in Fig. i, or else the length of the fibres must be

changed, as in Fig. 2
;
and since in practice it is found that

the fibres are so firmly knit as effectually to prevent sliding,

we have only to consider the effects of a change in the

length of the fibres. The resistance to this change is an

element of strength other than that due to quantity of

material, and its nature will now be examined.
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23. Power Extending Fibres in Proportion to Depth
of Beam. If a beam be made of four equal pieces, as in

Fig- 3> and be held together by an elastic strap firmly

attached to the under side

of the beam, and by two

cross pieces let into the

horizontal joint and closely

fitted
;
and if upon this beam

FlG - 3- a weight be laid at the

middle sufficient to elongate the strap and open the vertical

joint at the bottom a given distance say an eighth of an

inch
; then, if the weight and the two upper quarters of the

beam be removed, and a weight laid on at the middle suffi-

cient to open the joint, to the like distance as before, it will

be found that this weight is just one half of that before used.

In this experiment, the strap may be taken to represent the

fibres at the lower edge of the beam.

We here find a relation between the weight and the

height of the beam. The greater the height, the greater

must be the weight to produce a like effect upon the fibres

of the lower edge. Double the height requires double the

weight. Three times the height requires three times the

weight. Therefore we decide that, in elongating- the fibres

at the bottom, the weight and the height are directly in pro-

portion.

It must be observed that Fig. 3 and its explanation arc

not to be taken as a representation of the full effect of a

transverse strain upon a beam. The scope of the experi-

ment is limited to the action of the fibres at the lower

edge. The other fibres, all contributing more or less to the

resistance, are, for the moment, neglected, in order to show

this one feature of the strain namely, the manner in which

fibres at any point contribute to the general resistance.

Galileo, of Italy, who, two hundred and fifty years since,
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was the first to show the connection of the theory of trans-

verse strains with mathematics, not recognizing in his theory

the compressibility of the fibres at the concave side of the

beam, supposed that in a rupture by cross strain all the

fibres were separated by pulling apart ;
as might be shown

in Fig. 3, in case the rubber were extended up each side to

the top, instead of being confined to the lower edge. We
are greatly indebted to Galileo for his studies in this direc-

tion
;
but Hooke, Mariotte, and Leibnitz, about 1680, found

the theory of Galileo to be defective, and showed that the

fibres were elastic
;
that only those fibres at the convex side

of the beam suffer extension ; that those at the concave side

suffer compression and are shortened
;
and that, at the line

separating the fibres which are extended from those which

are compressed, they are neither lengthened nor shortened,

but remain at their natural length. This line is denominated

the neutral line or surface.

It will here be observed that the amount of extension or

compression in any fibre is proportional to its distance from

the neutral line.



CHAPTER II.

APPLICATION OF THE LEVER PRINCIPLE.

ART. 24. The Law of the L,ever. The deduction drawn

from the experiment named in Art. 23 depends for its truth

upon what is known as the law of the lever. This law, in

so far as it applies to transverse strains, will now be con-

sidered.

25. Equilibrium Direction of Presures. When equal

weights, suspended from the ends of a beam supported upon
a fulcrum, as at W in Fig. 4, are in equilibrium, it is found

that the point of support 'is just midway between the two

weights, provided that the beam be of equal size and weight

throughout its length.

It will be observed that the directions of the strains

upon the beam are vertical, those at the ends being down-

w ward, while that at the middle is

upward ;
also that the strains are

evidently equal, the upward pres-

sure at the middle being just equal

to the sum of the two weights at

FIG. 4. the ends; for if unequal, there

would be no equilibrium, but a movement in the direction

of the greater power.

We decide, then, that the pressure upon the fulcrum is

equal to the sum of the two weights.*

* In ascertaining the pressure at the fulcrum, the weight of the beam

itself should be added to the sum of the two weights, but to simplify the ques-

tion, the beam, or lever, is supposed to be without weight.



REACTION EQUAL TO THE PRESSURE. 39

25. Conditions of Freure in a Loaded Beam. In

Fig. 5 we have a beam supported at each end, and a weight

W laid upon the middle of its

length.

Comparing this with Fig. 4

we see that the strains here
..j^ ^J^

are also vertical but in re-

versed order, the one at the

middle being downwards, FIG. 5.

while those at the ends are upwards. In other respects we

have here the same conditions as in Fig. 4.

The downward pressure at the middle is equal to the

upward pressures or reactions at the ends ; and, since the

weight is placed midway between the points of support, the

reactions at these points are equal, and each is equal to one

half the weight at the middle.

27. The Principle of the Lever. In Fig. 6 is shown a

lever resting upon a fulcrum W
t
and carrying at its ends

the weights R and P. w

Here, the fulcrum W is not at

the middle as in Fig. 4, but at a

point which divides the lever into

two unequal parts, m and n.

In accordance with the prin- FIG. 6.

ciple of the lever, the two parts m and n, when there is an

equilibrium, are in proportion to the two weights P and

R; or, the shorter arm is to the longer as the lesser weight

is to the greater ;* or,

m : n : : P : R

* For a demonstration of the lever principle see an article, by the author,

in the Mathematical Monthly, published at Cambridge, U. S.
f

vol. I, 1858,

page 77.
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from which we have

Rm = Pn

~ n
(1.)m v '

and.

^m

As an example: suppose the lever to be 12 feet long, and

so placed upon the fulcrum as to make the two arms, m and

, 4 and 8 feet respectively. Then, if the shorter arm have

suspended from its end a weight, R, of 500 pounds, what

weight, P, will be required at the end of the longer arm to

produce equilibrium ?

Formula (#.) is appropriate to this case. Therefore

P=R 500 x ~= 250 pounds; equals the weight required

on the longer arm.

From Art. 25 it is evident that the sum of the weights
R and P is equal to the upward force or reaction at W.

Therefore, we have,

W= + P
and W-R=P

Substituting this value for />in formula (^.),we have

n

_ m
n

W= R
'

and, multiplying by
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and, since n + m is equal to the whole length of the beam,

or to /, therefore

R=W^ (3.)

In a similar manner, it is found that

P= w (4.)

28- A Loaded Beam Supported at Eaeli End. In

Fig. 7 a weight W, is carried by a beam resting at its ends

upon two supports. Here we

have, with the pressures in

reversed order, similar con-

ditions with those shown in

Fig. 6. Here, also, it will be

observed that the weight W
is equal to the sum of the

upward resistances R and P (Arts. 25 and 26) neglecting

for the present the weight of the beam itself and that the

upward resistance at R may be found by formula (3.) ; while

that at P is found by formula (4.).

For example : suppose the weight W, Fig. 7, to be 800

pounds ;
and that it be located five feet from one end of the

beam and eight feet from the other end.

Here W 800, m 5, n = 8 and / = 13.

To find the pressure at R, we have, by formula (#.),

R W = 800 x = 4Q2T4T pounds.
I 13

To find the pressure at P, we have, by formula (4.\

P W~ 800 x -- = 307^ pounds.

To verify the rule, we find that

+ 37A = 800 pounds = W.
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Either one of these upward pressures, or reactions, being-

found, the other may be determined by subtracting
1 the first

from W.

From the above, we see that the portion of a weight

borne by one support is equal to the product of the weight

into its distance from the other support, divided by the

length between the two supports.

29. A Bent L.evcr. In Fig. 8 let P C G be a rigid bar,

shaped to a right angle at C, and

free to revolve on C as a centre.

Let R and H be two weights at-

tached by cords to the points P
and G, the cords passing over

the pulleys D and E. Let the

weights be so proportioned as

FIG. 8. to produce an equilibrium.

Here P C G is what is termed a bent lever, and the

arms a and b are in proportion to the weights R and H ; or,

a \ b \\ R \ H and

30. Horizontal Strains Illustrated by the Bent Lever.

To apply the principle of the bent lever let a beam R E

(Fig. 9) be laid upon two points of support, R and E, and

be loaded at the middle with

the weight W. The action

-of this weight upon the beam

is similar in its effect to that

taking place in the bent lever

of Fig. 8, producing horizon-

FIG. 9. tal strains, which compress

the fibres at the top of the beam and extend those at the

bottom. (Art. 23).
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Let the line P C represent the line of division between

the compressed and the extended fibres. Then P C G may
be taken to represent the bent lever of Fig. 8

;
for the

upward pressure or reaction at R, moving the arm of lever

P,C, which turns on the point (7, as a centre, acts upon the

point G, through the arm of lever *C G, moving the point G

horizontally from E, and thus extending the fibres in the

line G E.

Now, if H represents this horizontal strain along the

bottom of the beam, and -R the vertical strain at P both

being due to the action of the weight W; if the arm P C
be called b, and C G called a, then, as before,

a : b : : R : H from which

H= R t
a

For an application: let b in a given case equal 10 feet, a

equal 6 inches, or 0-5 of a foot, and R equal 1200 pounds;
what will be the horizontal strain in the fibres at the lower

edge of the beam ?

From the above formula,

b 10H -- R = 1200 x 1200x20.= 24,000

or the horizontal strain equals 24,000 pounds.

31. Reitaiicc of Fibres in Proportion to the Depth of

Beam. From the proportion in the last article,

a : b : : R : H we have

Ha = Rb and dividing by a b we have

J^-^-jK
b a

For any given material, the power of the fibres to resist

tension is limited, and, since this power is represented by H,
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therefore H is limited. In any given length of beam, b,

which is dependent upon the length, is also given ; hence
TT TT -D r>

-T- becomes a fixed* quantity ;
and since -7- = , therefore

is a fixed quantity. But R and a may vary individually,

provided that the quotient of R divided by a be not changed.

So, then, if R be increased, a must also be increased, and in

a like proportion ;
if R be doubled, a must be doubled

;

if one be trebled, the other must be trebled
; or, in whatever

proportion one is increased or diminished, the other must

be increased or diminished in like proportion. Therefore

R and a are in direct proportion.

Take a as equal to one half of the depth of the

beam, or ,
and R as equal to one half the weight at the

W
middle of the beam, or .

Then, since a is in proportion to R, d is in proportion to

W, or the depth of the beam must be in proportion to

the weight.

This result is the same as that arrived at in Art. 23 ;

that the power of the fibres at the bottom to resist extension

is in proportion to the depth of the beam.
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DESTRUCTIVE ENERGY AND RESISTANCE.

ART. 32. Reistance to Comprcion Neutral Line. We
have shown the manner in which the fibres at the convex

side of a beam contribute to its strength by their resistance

to extension. It may now be observed that the resistance to

compression of the fibres at the concave side is but a counter-

part of the resistance to extension of the fibres at the convex

side.

Whatever resistance may be given out in one way at one

side of the beam, a like amount of resistance will be called

up in the other way at the other side. The one balances the

other, like two weights at the ends of a lever (Figs. 4 and 6).

If the powers of resistance to compression and extension be

equal, as is the case in some kinds of wood, then one half of

the fibres will be compressed while the other half are extend-

ed
; and, should the beam be of rectangular section, the neu-

tral line will occur at the middle of the height of the beam,

and the condition of equilibrium will be as shown in Fig. 4-

If the capability to resist compression exceeds the resist-

ance to extension, as in cast-iron, then the greater portion of

the fibres will be employed in resisting tension, and the neu-

tral line will be nearer to the concave side
;
an equilibrium

represented by Fig. 6, in which the shorter arm of the lever

may represent the portion of the fibres subjected to compres-
sion, and the longer arm those suffering tension, and where

R, the heavier weight, may represent the power of any given
number of fibres to resist compression, while P, the lesser



46 DESTRUCTIVE ENERGY AND RESISTANCE. CHAP. III.

weight, represents the power of an equal number of fibres

to resist tension.

In Art. 31 the power of the fibres at the convex side of a

beam to resist extension was shown to be in proportion to

the depth of the beam. This result was obtained by taking

the position of the neutral line at the middle of the depth.

The like result will be obtained even when the neutral line

occurs at a point other than the middle. For, whatever be

the proportionate distance of this line from the lower edge,

that distance, for the same material, will always bear the

same proportion to the depth of the beam.

33. Elements of Resistance to Rupture. Having now

sufficient data for the purpose, the several elements of

strength which have been developed may be brought to-

gether, and their sum taken as the total resistance to rup-

ture.

First. We have the rate of strength, or the weight in

pounds required to break a unit of the given material one

inch square and one foot long, when supported at each end

(Arts. 12 and 13). Let ^represent this weight.

Second. We have the strength in proportion to the area

of cross-section, or to the product of the breadth into the

depth (Arts. 16 and 17). If b be put to represent the breadth,

and d the depth, both in inches, then this element of strength

may be represented by b x d or bd.

Third and last, we have the strength due to the resist-

ance of the fibres to a change in length, which has been

shown to be in proportion to the depth (Arts. 22, 23 and

31), and may therefore be represented by d.

Putting these three elements of strength together, and

representing by R the total resistance, we have,
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R = Bxbdxd or

R = Bbd 3

(5.)*

and this is the total power of resistance to a cross strain.

34. a Destructive Energies. It is requisite now to con-

sider the destructive energies. It has been shown (Art. 27)

that the power of a weight, acting at the end of a lever, is

in proportion to the length of the lever. This is seen in Fig.

6, where a small weight acting at the end of the longer arm

produces as great an effect as the larger weight upon the

shorter arm. This principle may be stated thus : The mo-

ment of a weight is equal to the product of the weight into

the length of the arm of leverage at which it acts.

If n (Fig. 6) be the arm of leverage, and P the weight act-

ing at its end, then the moment of P is equal to the weight
P multiolied by the length of the lever n ; or,

Moment = Pn.

Let 5 represent the weight which it is found on trial is

required to break a lever or rod of given material, one inch

square, and projecting one foot from a wall into which it is

firmly imbedded
;
the weight being suspended from the free

end of the lever. Then, since the moment equals the weight
into its arm of leverage, as above stated, which arm in this

case equals unity, we have

5 x i = Pn

*
Strictly speaking, the whole power of abeam to resist rupture is due to the

resistance of the fibres to compression and extension, as will be shown in speak-

ing of the resistance to bending and it is usual to obtain the amount of this

power by a more direct method ; arriving at the total resistance by one opera-

tion, and this based upon a consideration of the resistance offered by each fibre

to a change of length, and taking the sum of these resistances
;
but it is thought

that the method here pursued is better adapted to securing the object had in

view in writing this work.
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or the power of resistance of such a rod equals S, the weight

required to break it.

Having this index of strength, S, and knowing (Art. 33)
that the resistance to breaking is in proportion to the breadth

and the square of the depth, then for levers larger than one

inch square, and longer than one foot, when the destructive

energy equals the resistance, we have

Pn = Sbd* (0.)

that is, for the moment, or destructive energy, we have

P, the weight in pounds, multiplied by ;/, the length in feet
;

and for the resistance, we have 5, the index of strength for

the sectional area of one inch square, multiplied by the

breadth of the lever, and by the square of its depth ; the

breadth and depth both being in inches.

35. Rule for Tranvere Strength of Beams. This for-

mula, (6.), gives a rule for the transverse strength of lever?.

From it we may derive a rule for the transverse strength

of beams supported at both ends.

We know, for example, from Arts. 25 and 26, that the

strains in a lever are the same as in a beam which is twice

the length of, and loaded at the middle with twice the weight

supported at the end of the lever. Therefore, when P is

equal to the half of W, the weight at the middle of a beam

(Fig. 5), and n is equal to the half of /, the length of the beam,

we have
W I WL

Pn x - = - and since, (form. 0),

Pn = Sbd* by substitution we have

=Sbd* (7.) or

Wl= 4Sbd
a

(8.)

in which Wl equals the moment or destructive energy of a

weight at the middle of a beam, and ^Sbd* equals the resist-
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ance of the beam. But this resistance was found (Art. 33)

to be equal to Bbd2
; therefore,

4$bd* = Bbd*

hence Wl = Bbd 2

(9.)

This is the required rule for the strength of beams sup-

ported at each end. In it W equals the pounds laid on at the

middle of the beam, / the length of the beam in feet, b and d

the breadth and depth respectively of the beam in inches,

and B the weight in pounds at the middle required to break

a unit of material (Art. 12) of like kind with that in the beam,
when strained in a similar manner.

It may be observed here that from

Bbd 2
^Sbd

2
as above, we have

B = 4S

or, the weight at the middle required to break a unit of

material, when supported at each end, is equal to four times

the weight required to break it when fixed at one end only,

and the weight suspended from the other.*

* Professor Moseley, in his "Engineering and Architecture," puts S to rep-

resent the index of strength, but his definition of this index shows it to be not

the same as that for which S is put in this work. While, with us, S represents

the resistance to rupture of a unit of material (one inch square and one foot

long), fixed at one end and loaded at the other
;
in his work (Art. 408, p. 521,

Mahan's Moseley, New York, 1856), S is placed to represent the "resistance in

pounds opposed to the rupture of each square inch at the surface exposed to a tensile

strain"

To compare the two, let M be put for the 6* of Prof. Moseley. Then his ex-

pression (Art. 414, p. 528) for rectangular beams,

I be 3P = - S becomes
6 a

P M -r- in which
da

P is the weight at one end of a beam, which is fixed at the other end, and c is

the depth and a the length, both in inches. If for c we put */and for a we put ,

representing feet instead of inches, so that a = 12 n, then
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36. Formulas Derived from t!ii Rule. From the gene-

ral formula, (9.), of Art. 35, any one of the five quantities

named may be found, the other four being given.

bda
P - M - and

72 Pn = Mbd*

Now we have found (form. 6\ that

Pn - Sbd*

Multiplying this by 72 gives

72 Pn = TZ

Comparing this value of 72 Pn with that from Prof. Moseley, as above, we

have

from which M=-]2S
or M, the S of Prof. Moseley, is equal to 72 times the S of this work.

We also find that Prof. Rankine (Applied Mechanics, Arts. 294 and 296)

similarly designates the index of strength ; or, as he and Prof. M. both term it,

"the modulus of rupture." Prof. R. defines it the same as Prof. M.
; except,

that instead of limiting it to the tensile strain, he applies it equally to that ele-

ment, tension or compression, which first overcomes the strength of the beam.

Prof. Rankine further defines it (p. 634) to be "
eighteen times the load ivhicli

is required to break a bar of one inch square, supported at two points one foot apart,

and loaded in the middle between the points of support" Now the bar here de-

scribed is identical with the unit of material adopted in this work (Arts. 12

and 13) ;
to designate the strength of which we have used the symbol B. To

compare the two, we have, as above found,

M= 725
and also, (Art. 35)

B - 4$

Multiplying the latter equation by 18, we have

18.5 = 726" or

iB = M or

as defined by Prof. Rankine, M, the S of Prof. Moseley, is equal to 18 times the

value of B, the index of strength as used in this work. Hence the values of

S, as given for various materials by Profs. Moseley and Rankine, are 18 times

the values of B in this work for the same materials. Owing, however, to a con-

siderable variation in materials of the same name, this relation will be found

only approximate.
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For examplej

Bkd'
j- (13.)

Bbd*

In these formulas B is the breaking weight in pounds ap-

plied at the middle. The value of B (Arts. 33 and 35) is

given for the length in feet, and the breadth and depth in

inches.

QUESTIONS FOR PRACTICE.

37. What kind of strain is a floor beam subjected to?

38. In a beam subjected to a transverse strain, how-

does the breadth contribute to its strength ?

39. How does the depth contribute to its strength?

4-0. What are the elements of resistance, and what is the

expression for this resistance ?

4-1. When a beam supported at each end carries a load

at its middle, what is the amount of pressure sustained by
the two points of support, taken together?
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42. What portion of the load is upheld .by each sup-

port?

43 B If the load be not at the middle, what is the sum of

the pressures upon the two points of support ?

. In the latter case, what proportions do the parts

borne at the two points of support bear to each other?

45. What expression represents that borne by the near

support.

46. What expression represents the pressure upon the

remote support ?

47. If a beam, 12 feet long between bearings, carries a

load of 15,000 pounds, at a point 4 feet from one bearing,

what portion of this load is borne by the near support ?

And what is the pressure upon the remote support?

48. When a beam is subjected to transverse strain at its

middle, what constitutes the destructive energy tending to

rupture?

49. When the destructive energy and the resistance are

in equilibrium, what expression represents the conditions of

the case ?

50. What is the breaking load of a Georgia pine beam,

15 feet long between the bearings; the breadth being 4

inches, the depth 10, and the load at the middle ?

51. How many times as strong as when laid on the flat

is a beam when set on edge ?



CHAPTER IV

THE EFFECT OF WEIGHT AS REGARDS ITS POSITION.

ART. 52. Kelation between Destructive Energy and

Resistance. In a beam, laid upon two bearings, and sustain-

ing a load at the middle, we have discovered certain relations

between the load and the beam.

The load has a tendency to destroy the beam, while the

beam has certain elements of resistance to this destructive

power.
The destructive energy exerted by the load is equal to

the product of half the load multiplied by half the length of

the beam. The power of resistance of the beam is equal to

the product of the area of cross-section of the beam, multi-

plied by its depth and by the strength of the unit of mate-

rial. At the moment of rupture, the destructive energy and

the power of resistance are equal ; or, as modified in Art.

35,

Wl = Bbdd or, as in formula (9.),

WL = Bbd*

53. Dimensions and Weights to be of Like Dciiomiua-

tioiis with Those of the Unit Adopted. In applying the above

formula it is to be observed, that the length', breadth and

depth, in any given case, are to be taken in like denominations

with those of the unit of material adopted (Art. 33). For ex-

ample : if the unit of material be that of this work, then, in

the application of the formula, the breadth and depth are to

be taken in inches, and the length between bearings in feet.
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It is also requisite that the weight be taken in like denomi-

nation with that by which the resistance of the unit of mate-

rial was ascertained. If the one is in ounces, the other is

also to be in ounces
;

if one is in pounds, the other must be

in pounds ; or, if in tons, then in tons.

The strength of the unit of material adopted for this work

is given in pounds ; therefore, in applying the rule, the

weight given, or to be found, must necessarily be in pounds.

54. Position of the Weight upon the Beam. The loca-

tion of the weight upon the beam now requires considera-

tion.

Upon our unit of material, which is supported at each

end, the load is understood to have been located at the mid-

dle of the length ; so, in using formula (P.), the weight given,

or sought, must be located at the middle of the length of the

given beam.

55. Formula Modified to Apply to a L.ever. By pro-

per modifications this formula may also be applied to the

case of a weight suspended from one end of a lever or pro-

jecting beam. To show the application, we proceed as fol-

lows :

In Fig. 10 one half of the load W is borne on each one

of the supports A and B.

w

w

FIG. 10. FIG. ii.

In Fig. ii we have a beam of the same length, and sub-

jected to the same forces, but in reversed order (Art. 26).
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While Fig. 10 represents a beam supported at both ends

and loaded in the middle, one half of Fig. n may be taken

to represent a lever projecting from a wall and loaded at

the free end.

In these two cases the moment or destructive energy

tending to break the beam is the same in each, and yet it is

produced in Fig. n with only one half the weight, acting at

the end of a lever only one half the length of the beam. We
have, therefore,

or, in a lever, it requires but a quarter of the weight to pro-

duce a given destructive energy, that is required in a beam

of equal length, laid upon two supports that is to say, if

two beams of like material, and of the same cross-section, be

subjected to transverse strains, in like positions as to breadth

and depth, one beam being supported at both ends and load-

ed in the middle, and the other one firmly fixed in a wall at

one end and loaded at the other
;
and if the distance between

the wall and the weight in this latter beam be equal to the

distance between the bearings in the former
;
then but one

quarter of the weight requisite to break the beam supported
at both ends will be required to break the projecting one.

If the former requires 10,000 pounds to break it, then the

latter will be broken by 2500 pounds.
The proportion between the weights is as 4 to I. But

suppose the weights upon the two beams are equal.' In this

case the lever will have to be made stronger, and its sec-

tional area enlarged sufficiently to carry 4 times the weight.
Hence we have, for beams fixed at one end and loaded at the

other,
= Bbd*

in which W is the weight suspended from the end of the

lever, and / is the length of the lever
; or, to correspond with
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the symbols used in Art. 34, where P equals the weight and

;/ equals the length of the lever, we have

4/fc = Bbd* (15.)

56. Effect of a Load at Any Point in a Beam. The

next case for consideration is that of the effect of a weight
located at any point in the length of a beam, the beam being

supported at both ends.

In Arts. 27 and 28 it was shown, in cases of this kind, that

R, the portion of the whole weight borne at the nearer end,

is (form. 3.) equal to
Wj-\ and that P, the portion resting

upon the more remote end, is (form. 4-) equal to W,-
;

where W7
equals the weight on the beam, R the portion of the

weight carried to the near support, P the portion carried to

the remote support, / the length of the beam, m the distance

from the weight to the near support, and n the distance to

the remote support.

As shown in Art. 34, the effective power or moment of a

weight is equal to the product of the weight into the arm of

the lever, at the end of which it acts. In Fig. 6 the weight

R may be taken to represent the reaction of the point of

support R in Fig. 7; and the destructive effect at the point

of the fulcrum W in Fig. 6, taken to be the same as that at

the location of the weight W in Fig. 7, as the strains in the

two pieces are equal ;
and hence, the moment of R, Fig. 6, is

equal to the product of R into its arm of lever ;;/, or equal

to Rm.

Taking the value of R in formula (3.), and multiplying it

by its arm of lever, /#, we have
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Again, taking the value of P in formula (^.), and multi-

plying it by its arm of lever, ;/, we have

pn=w- n = wmf
The two results agree, as they should.

57. Rule for a Beam Loaded at Any Point. These

formulas may be tested by taking the two extreme condi-

tions, the load at the middle and at the end.

First : When the load is at the middle

m n \l

the destructive energy, as above, will be

D = W 1

^ = W^f=W^-
the same value as obtained in Art. 35.

Second : When the weight is moved towards the nearer

end, m becomes gradually shorter, and when the weight in

its movement reaches the point of support, m becomes zero,

and n equals /. The destructive energy will then be

as it ought to be, for the weight no longer exerts any cross

strain upon the beam.

The destructive energy therefore of a weight, W, when

laid at any point upon a beam, is

When laid at the middle, it is as above shown,
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In formula (7.) we have

therefore, by substitution,

W?f = Sbd*

Multiplying by 4, we have

and since, by A rt. 35,

we have

= Bbd* (16.)

a rule for the resistance of a beam when the weight is located

at any point in its length.

58. Effect of an Equally Distributed Load. Let the

effect of an equally distributed weight now be considered.

Formula (16.) gives the effect of a weight at any point of

a beam that is, the effect of the weight at the point where

it is located
;
but what effect at the middle of the beam is

produced by a weight out of the middle ?

When a weight is hung at the end of a projecting lever,

its effective energy, at any given point of the length of the

lever, is equal to the product of the weight multiplied into

the distance of that point from the weight (Art. 340.

In Arts. 27 and 28 we have the effect of the weight W
upon its points of support. For the remote end, in Fig. 7, this

is P= W
-j.

This is the reaction, or power acting upward
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at the point of support P. We have, Arts. 56 and 57, the

moment or destructive energy due to this reaction equal to

but if, instead of the whole distance ;/, we take only a part

of it, or say to the middle of the beam, or /, we have, instead

of/X

Px$t = W~ x \l = $W^-=$Wm

or, we have, for M, the effect at the middle due to a weight

placed at any point,

This result may be tested as in Art. 57; for let m
|-/,

then M |-
Wm becomes

which is a quarter of the weight at the middle into the whole

length, as shown in Art. 55.

Again, taking the other extreme
;
when m becomes zero,

then M =
j-
Wm becomes

which is evidently correct, for when the weight is moved
from over the clear bearing on to the point of support it

ceases to exert any cross strain whatever upon any point of

the beam.

From the above, we conclude that the effect produced at

the middle of a beam, by a weight located at any point of its

length, is equal to the product of half the weight into its

distance from its nearest point of support.

This result would be true of a second weight, and a third,

and of any number of weights. If the weights R, P, Q, etc.

(Fig. 12), be located on a beam, at distances from their near-
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cst point of support equal to ;;/, r, s, etc., their joint effect at

the middle of the beam will be

m + \Pr + \Qs + etc.

or

59. Effect at middle from an Equally Distributed I,oad. -

We may now ascertain the effect produced at the middle of

a beam by an equally distributed load.

Let a beam, A B (Fig. 12), of homologous material, and of

equal sectional area throughout its length, be divided into

any number of equal parts.

T~|s
The weight of any one of these

parts will equal that of any
other part, and therefore we

have in this beam a case of

an equally distributed load.

Now, suppose the weight of

each of these parts to be concentrated at its centre of

gravity, and represented by a ball, as R, P, or Q, suspended

from that centre of gravity. Let / equal the length of each

of the parts into which the beam is divided, then m = -
/,

r = - / and s = -
/, and, since M - Win, we have for22 2

the effect of the weight R, at the middle of the beam,

= ~R-t\ for the effect of P, M=-22 2

- -

-f\ and for the
2

effect of Q, M = - Q -
/; etc., for all the weights on one half

of the beam.

If these results be doubled (for the effects of the weights

on the other half would equal these), we shall have the total

effect at the middle of the beam of all the weights. When,
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as in this case, the beam is divided into six parts, we have

for the total effect at the middle,

- tQ222
Now if we put the symbol U to represent a uniformly

distributed load, we have

^ R = P=Q = ~ therefore

In this case t equals ,
therefore

M=^U~= l- Ul468
In which U equals the whole weight uniformly distributed

over the beam.

We have seen (Art. 35) that \Wl is the destructive ener-

gy of a weight concentrated at the centre of the beam. We
now see, as above, that this same effect is produced by \UL
We therefore have

i-7/ ^Wl or, multiplying by 4,

$u=w
or, when the effects of the two loads upon a beam are equal,

one half of /, the distributed load, will equal the load W,

concentrated at the middle.

60. Example of Effect of an Equally Distributed Load.

Let R, P, Q, etc., each equal 20 pounds; or the whole load

U equal 6x 20 = 120 pounds. Let the whole length, 12 feet,

be divided into six equal parts, and the equal loads be sus-

pended from the centre of each of these parts. Then from

the nearer point of support, A, the distance m to R is one

foot
;
the distance r to P is three feet

;
and the distance s to
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Q is five feet
; and, since R, Py

and Q are each equal to 20,

and (Art. 58)

M = Wm therefore

M =
-J-
x 20

M 10 (i +3 + 5) 10x9 = 90

' The like effect, 90 pounds, is had from the three weights

upon the other half of the beam. Adding these, we have 180

pounds. This is the destructive energy exerted at the mid-

dle of the beam by the six weights, or by U, the 120 pounds

equally distributed along the beam. As a test of this, let it

now be shown what weight concentrated at the middle of the-

beam would produce the like effect. In Art. 35 we have for

the destructive energy, D = j- Wl, from which W= and
^

since, as above, D = 180 and I = 12, we have W =. --- = 60
J

pounds. This is the weight concentrated at the middle.

Above, we had /, the equally distributed Aveight, equal to

1 20 pounds, or twice 60. Therefore 2W = U. Thus, as before,

it is seen that an equally distributed weight produces an

effect at the middle equal to that produced by one half the

weight if concentrated at the middle.

6L Rcult alo Obtained toy the Lever Principle. This

result may also be obtained by an application of the lever

principle. In Fig. 13 a double le-

I ver is loaded with weights, pro-

ducing strains similar to those in

a beam such as Fig. 12. Here the

arm of lever at which R acts is

five feet, that of P three feet, and

Q one foot
; therefore,
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Rx$ = 2OX$ = 100

Px 3 = 20 X 3 = 60

Q X I =: 20 X I = 20

1 80 pounds.

This- is the whole energy, because the weights on the other

side of the fulcrum do not add to the strain at W\ they only

balance the weights R, P, and Q.

The full effect, therefore, at the middle of the beam is 180

pounds, as before shown, and this effect is produced by

3 x 20 = 60 pounds equally distributed.

Now, what concentrated weight at the end of the lever

would produce an equal effect ?

Since the weight P, at the end of a lever, multiplied by

n, the length of the lever, is the moment or destructive

energy of the weight, therefore

Pn = 1 80 the moment as above, or

=
n 6

and this is one half of 60, the distributed weight which pro-

duced a like effect.

Hence we find that a given load, if concentrated at the

middle of a beam, will have a destructive energy there equal

to that of twice said load equally distributed over the length

of the beam
; or, in other words, an equally distributed load

will need to be double the weight of a concentrated load to

produce like effects upon any given beam.

In formula (9.) W represents the concentrated weight at

the middle. If for W we substitute its equivalent %U, we

have

(17.)



64 EFFECT OF WEIGHT AS REGARDS ITS POSITION. CHAP. IV.

QUESTIONS FOR PRACTICE.

62. A white pine beam, 6x9 inches, supported at each

end, and set upon edge, is 12 feet long. What weight laid at

4 feet from one end would break it ?

63. What weight equally distributed over the length of

the above beam would break it ?

64. What weight concentrated at the middle of the

length of the same beam would break it ?

65. What weight would break this beam if suspended

from one end of it, the other end being fixed in a wall ?



CHAPTER V.

COMPARISON OF CONDITIONS SAFE LOAD.

ART. 66. Relation between Lengths, Weights and Ef-

fects. In the consideration of the effect of weights upon

beams, we have deduced certain formulas applicable under

various conditions. These rules Avill now be presented in

such manner as to show by comparison : first, what relation

the lengths and weights bear to each other when the effects

are equal ; and, second, the resulting effects when the lengths

and weights are equal.

67. Equal Effects. Take the four Figs., 14, 15, 16 and 17.

w

FIG. 14. FIG. 16.

RRRRRRRR

FIG. 15. FIG. 17.

The lengths of the beams and the amounts of the weights
with which they are loaded, are such as to produce equal
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effects. For example, the dimensions are such that in

all of the figures, I 2n and s ^ ? ;
and the weights

8 10

are so proportioned that W = 2 P 4 R. By comparison,

we find that in Fig. 14 the destructive energy is

In Fig. 15 the destructive energy is equal to the sum of

the products of the several weights R, into their respective

distances from the point of support ; or,

Jfr(i + 3+ 5 + 7)
= i6Rs = i6

In Fig. 16 the destructive energy is

In Fig. 17 the destructive energy equals the sum of the

products of the several weights R, into one half their respec-

tive distances from the nearest point of support (Art. 58),

or, 2

2 [i^ (1 + 3 + 5 4-7)] =

16)= i6Rs= i

When the load is at any point upon the beam, the destruc-

. -J7 mil
tive energy is W =--.

This case is a modification of Fig. 16, for, when

m n = %l we have,

68. Comparison of I^en^tlis and Weiglit Producing

Equal Effects. We now see that, in order to produce equal

effects, we must have the length and weight in Fig. 16 twice
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those in Fig. 14 ;
and the length and weights of Fig. 17 twice

those of Fig. 15.

Again, we see that, while the lengths of Figs. 14 and 15

are the same, the weights of the latter are equal in amount

to twice that of the former
;
and that the same proportions

exist in Figs. 16 and 17.

69. Tlie Effects from Equal Weights and Lengths. In

regard to the second relation, as expressed in Art. 66.

We have, in Figs. 18, 19, 20, and 21, examples showing the

w

FIG. 18. FIG. 20.

FIG. 19. FIG. 21.

difference of effect when the load upon each beam is equal

to the load upon either of the other beams, and the lengths

of the beams are equal.

The destructive energy is

in Fig. 18, D = Pn

19, D
"

20, D
"

21,
>



68 COMPARISON OF CONDITIONS SAFE LOAD. CHAP. V.

70. Rules for Cases in wliieli the Weights and Lengths
are Equal. Putting these equal to the resistance for levers,

we have (Art. 35) for the case shown

in Fig. 18, Pn = Sbd 2

"
19, $Un

- Sbd2

"
20, \Wl= Sbd 2

21, \Ul = Sbd s

and, since (Art. 35) ^S = B
y
S = J/?. If in the above we

substitute this value for 5, we shall have the following rules :

For case i, ^Pn Bbd2

(15.)

"
2, 2 Un = Bbd9

(18.)

"
3, Wl = Bbd9

(9.)

"
4, $Ul= Bbd 2

(17.)

and in case 5, W~ = ^^ (.Z0.)

this last being that of a load located at any point in the

length of a beam (Art. 57).

71. Breaking and Safe Loads. These rules show the

relation of the load to the resistance. Before showing their

applications, the proportion which exists between the break-

ing load and what is called the safe load will be considered.

72. The above Rules Useful Only in Experiments.

The rules thus far shown have all been based upon the con-

dition of equilibrium between the destructive power of the

load and the resistance of the material ; or, in other words,

an equilibrium at the point of rupture. Hence they are

chiefly useful in testing materials to their breaking point.
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73. Value of <r
? the Symbol of Safety. To make the

rules useful to the architect, it is requisite to know what por-

tion of the breaking load should be trusted upon a beam.

It is evident that the permanent load should not be so great

as to injure the fibres of the beam.

The proportion between the safe and the breaking

weights differs in different materials. The breaking load on

a unit of material being represented by B, as before, let T

represent the safe load, and a the proportion between the
r) r)

two
; or, T : B : : i : a =- then T-. The values of a,

1 a

for several kinds of building materials, have been found

and recorded in Table XX., an examination of which will

show that a, for many kinds of materials, is nearly equal to 3,

a number which is in general use.*

74. Value of
,
the Symbol of Safety. In the rules a

may be taken as high as we please above the value given for

a in the table
;
but never lower than the value there given.

T)

If a be taken at 4, then, as above, T = = \B equals the safe

power of the unit of material, and we have Wl = \Bbd
2

; or,

^.Wl^Bbd*, as the proper rule for a beam supported at

each end and loaded at the centre. In order, however, to

* This is the value as fixed by taking the average of the results of the tests

of several specimens of the same kind of material, or material of the same name.

Owing to the large range in the results in any one material, it is not safe, in

a general use of this symbol, to take it at the average given in the table. It

should for ordinary use be taken higher.

When the kind of material in any special and important work is known,
and tests can be made of several fair specimens of it, and from the results com-

putations made of the values of a, then an average of these would be safe to use.

For the ordinary woods in general rules, it is prudent to take the value of a at

not less than 4.
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make the rules general, we shall not adopt any definite num-

ber, as 4, but use the symbol a. the value of which is to be

taken from the table in accordance with the kind of material

employed, increasing its value at discretion. (Sec note,

Art. 73.)

75. Rules for Safe Loaris. The rules, with this factor a

introduced, will then be as follows :

Rule i, 4Pan = Bbd* (19.)

"
3, Wai = Bbd2

(21.)
"

4, \Ual- Bbd 2

mn
5, 4,Wa-j-=Bbd' (23.)

76. Applications of tlie Rules. In this form the rules

are ready for use applying them as below.

Rule i is applicable to all cases where a load is suspended

from the end of a lever (Fig. 18), said lever being fixed at

the other end in a horizontal position.

Rule 2 applies to cases where a load is equally distributed

upon a lever fixed at one end (Fig. 19).

Rule 3 is applicable to a load concentrated at the middle

of a beam supported at both ends (Fig. 20).

Rule 4 is applicable to equally distributed loads upon

beams supported at both ends (Fig. 21).

Rule 5 is applicable to a load concentrated at any point

upon a beam supported at both ends (Fig. 7).

77. Example of Load at End of Lever. To show the

practical working of these rules, take, first, an example

coming under rule i, formula (19.),

4Pan = Bbd9
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Let it be required to find the requisite breadth and depth of a

piece of Georgia pine timber, fixed at one end in a wall, and

sustaining safely, at five feet from the wall, a weight of 1200

pounds ;
the ratio between the safe and breaking weights

being taken as i to 4, and the value of B for Georgia pine

being 850 (Art. 13).

78. Arithmetical Exemplification of the Rule. The

first thing, in applying a rule, is to distinguish between the

known and the unknown factors of an equation, by so trans-

posing them that those which are known shall stand upon
one side, and the unknown upon the other side of the equa-

tion. In rule i, formula (19.), as above, the known factors

are 4, P, a, n and B
;
therefore we transpose, so that

Substituting the known quantities for the symbols of the

first member, we have

4 x 1200 x 4 x g

79. Caution in Regard to
, the Symbol of Safety. The

working of this problem is interrupted to remark that

students are liable to err in estimating the value of a, making
it a fraction instead of a whole number. Thus, if the pro-

portion between the safe and the breaking weights be as

i to 4, they, starting with the idea that the safe weight is to

be one fourth of the breaking weight, make a equal to

J, instead of 4. This is a serious error, as the result would

be a destructive energy of only one sixteenth (for |-
: 4 : : i : 16)

of the true amount, and consequently the resultant resistance

of the timber would be but one sixteenth of what it should



72 COMPARISON OF CONDITIONS SAFE LOAD. CHAP. V.

be, and in practice it would be found that the beam would

break down with only one fourth of the amount considered

the safe weight.

To farther explain the value of a, let W equal the break-

ing weight, and T the safe weight ;
the proportion being as

4 to i. Then T \W, or ^T W. Now, in formula (9.)

(Wl Bbd 3

},
in order to preserve equality, it is requisite, in

removing the symbol W denoting the breaking weight, that

we substitute its equal, or ^T. So when, in the new for-

mula for safe weight, W is understood to represent not the

breaking but the safe weight, ^T becomes ^W, and we have

^Wl = Bbd2
;
therefore the symbol a is to be not a fraction

but a whole number.

Returning from this digression to the expression at the

end of Art. 78, and reducing it, we have

96000
- = 1 12-94

Here we have the value of the breadth multiplied by the

square of the depth, but neither the one nor the other is as

yet determined.

80. Various methods of Solving a Problem. There

are at least three ways of procedure by which to determine

the value of each of these factors. The breadth and depth

may be required to be equal ;
the breadth may be required

to bear a certain proportion to the depth ; or, one of the

factors may be fixed arbitrarily.

First. If the timber is to be square, then b will equal d,

bd 2 = d\ and d = ty 112-94 = 4-83

that is, the dimensions required are 4-83, or, say 5 inches

square.
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Second. Let the breadth be to the depth in the proportion

of 6 to 10, then

b : d\ : 6 : 10 or

iob = 6d or

b = o-6d Then

112-94 = bd 2 = o-6dx d* = o-6ds

= d 3 = 188-23 =w that is

^=5-73, and b= 5.73x0-6 = 3-44

The timber should be therefore 3-44 inches broad, and 5.73

inches deep ; or, 3^ x 5} inches.

Third. The breadth or depth may be determined arbitra-

rily, or be controlled by circumstances. Let the breadth be

fixed, say at 3 inches, then

112-94 = bd 2

3<af*

;

-ii2i=,/. = 37-65

d 6-14

The dimensions should be 3 x 6-14, or, say, 3 x 6J inches.

Again, let the depth be fixed, say at 6 inches, then

112-94 = bd* = bx 6*

112-

thus giving as the dimensions of the beam 3- 14 x 6, or, say

3J x 6 inches.

We have now these four answers to the question of

Art. 77, namely :

If the beam be square, the side of the square must be

5 inches.

If the breadth and depth be in the proportion of 6 to 10,

the breadth must be 3! and the depth 5f inches.
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If the breadth be fixed at 3 inches, then the depth must

be 6J inches.

If the depth be fixed at 6 inches, then the breadth must

be 3^ inches.

81. Example of Uniformly Distributed Load on Lever.

Take an example coming under rule 2, formula (20.),

Let the conditions be similar to those given in Art. 77, ex-

cept that the weight is to be equally distributed, instead of

being concentrated at the end. What are the required di-

mensions of breadth and depth ?

The formula transposed becomes,

2Uan _
B

As the known factors are all the same as in the last ex-

ample, except the numerical co-efficient, which here is only

one half of its former value, it follows that bd 2
in this case

must be equal to one half of bd* in the previous case
; or,

- =' 56.47 = bd*

Now to apply this result :

First. If the timber be square,

56-47 = d 3 = ^S4
3

Second. If the breadth and depth are to be as 6 to 10,

56-47 = 0-6 d 3

and = 4.55x0.6 =
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Third, If the breadth be fixed at 2 inches, then

56.47 = bd 3 = 2d a

^ = j* = 28 .24
2

d= 5-31

Fourth. If the depth be fixed at 5 inches, then

56-47 = bd 2
b x 5

9

The four answers are, therefore, 3-^ square 2f x 4^

2x5! and 2J x 5 ;
and the beam may be made of the dimen-

sions named in either of these four cases and be equally

strong.

82. Load Concentrated at Middle of Beam. In an

example under rule 3, the value of bd 2
in the formula

Wai = Bbd s

,
would be just one quarter of that required by

rule i.

83. Load Uniformly (Distributed on Beam Supported at

Both Ends. In cases under rule 4, the values of bd* would

be only one eighth of those under rule i
; and, in general, the

five rules given are so related that when the result of com-

putations under any one of them has been obtained, the re-

sult in any other one may be found by proportion, in compar-

ing the two rules applicable.
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QUESTIONS FOR PRACTICE.

84. What breadth and depth are required for a white

pine beam, of sufficient strength to carry safely 3000 pounds

equally distributed over its length, the beam being 12 feet

long and supported at each end ? The breadth is to be one

half of the depth, and the factor of safety a equals 4.

85. What would be the size if square ?

86. What would be the depth if the breadth be fixed at

3 inches ?

87. What would be the breadth if the depth were fixed

at 6 inches ?



CHAPTER VI.

APPLICATION OF RULES FLOORS.

ART. 88. Application of Rules to Construction of

Floors. Having completed the investigation of the strength

of beams to resist rupture so far as to obtain formulas or

rules applicable to the five principal cases of strain, we

will now show the application
1

of these rules to the solution

of such problems as occur in the construction of floors. As

these rules, however, are founded simply upon the resistance

to rupture, the size of a beam determined by them will be

found to be much less than by rules hereafter given ;
and the

beam, although perfectly safe, will yet be found so small as

to be decidedly objectionable on account of its excessive

deflection. Owing to this, floor beams in all cases should be

computed by the rules founded upon the resistance to flexure,

as in Chapter XVII.

89. Proper Rule for Floors. Floor beams are usually

subjected to equally distributed loads. For this, formula

(22.) is appropriate, as it
"

is applicable to equally distributed

loads upon beams supported at both ends." It is

= Bbd2

90. The Load on Ordinary Floors, Equally Distributed.
The load upon ordinary floors may be considered as being

equally distributed
;
at least when put to the severest test

a densely crowded assemblage of people. For this load all

floors should be prepared.
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91. Floors of Warehouses, Factories and Mills. The
floors of stores and warehouses, factories and mills, are re-

quired to sustain even greater loads than this, but in all the

load may be treated as one equally distributed.

92 B Rule for Load upon a Floor Beam. Each beam in

a floor is subjected to the strain arising from the load upon
so much of the floor as extends on each side half way to the

next adjoining beam
; or, that portion of the floor which is

measured by the length of the beam and by the distance

apart from centres at which the beams are laid. Denote

the distance apart, in feet, at which the beams are placed

(measuring from the centres' of the beams) by c. Then cl

will equal the surface of the floor carried by one of the

beams.

If the load in pounds upon each superficial foot of the

floor be expressed by /, then the total load upon a floor

beam will be cfl. This is an equivalent for U, the load.

By substituting for U its value cfl in the formula

we have

%acfl> = Bbd* (24.}

which is a rule for the load upon a floor beam.

93. Nature of the Load upon a Floor Beam. Before

this formula can be used, the value of /must be determined.

This symbol represents a compound weight, comprising

the weight of the materials of construction and that of the

superimposed load.

The weight of the materials of construction is also in

itself a compound load. A part of this load the floor plank

and ceiling (the latter being either.of boards or plastering)

will be a constant quantity in all floors
;
but the floor beam
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will vary in weight as the area of its cross-section. In all

cases of wooden beams, however, the weight of the beam is

so small, in proportion to the general load, that a sufficiently

near approximation to its weight may be assigned in each

case before the exact size of the beam be ascertained.

94-. Weight of Wooden Beams. For example, in floors

for dwellings, the beams will vary from 3x8 to 3 x 12, ac-

cording to the length of the beam. If the timber be white

pine (the weight of which is about 30 pounds per cubic foot,

or 2^ pounds per superficial foot, inch thick), the 3x8 beam

will weigh 5 pounds, and the 3x 12 beam 7-^ pounds; or, as

an average, say 6^ pounds per lineal foot for all white pine

beams for dwellings. For spruce, the average weight is

about the same. Hemlock, which is a little heavier, may be

taken at 7 pounds ; and Georgia pine (seldom used in dwell-

ings) should be put at about 9 pounds per lineal foot.

95. Weight in Stores, Factories and Ulilfls to be Esti-

mated. For stores, factories and mills the weight is greater,

and is to be estimated.

96. Weight of Floor Plank. The weight of the floor

plank, if of white pine or spruce, is about 3 pounds; or, if of

Georgia pine, about 4^ pounds per superficial foot.

97. Weight of PIaterSng. The weight of plastering

varies from 7 to 1 1 pounds, and is, on the average, about 9

pounds, including the lathing and furring, per superficial foot.

98. Weight of Beams in Dwellings. The weights of

beams, given in Art. 94, are for the lineal foot, but it is re-

quisite that this be reduced so as to show the weight per

square foot superficial of the floor. When the distance from
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centres at which the floor beams are placed is known, the

weight per lineal foot divided by the distance between cen-

tres in feet will give the desired result.

Thus, let the distance from centres of white pine floor

beams be 16 inches, or
i-J- feet. Then 6f -4- i-J

= 4^ pounds.
As the average distance from centres in dwellings differs

little from 16 inches, the weight of beams may be safely

taken at 5 pounds per superficial foot for white pine and

spruce.

99. Weight of Floors in Dwellings. In summing up
we have, for the weight of the floor plank, 3 pounds ;

for the

plastering, 9 pounds, and for the beams, 5 pounds ;
and the

sum of these items, 17, or, in round numbers, say 20 pounds
is the total weight of the materials of construction upon each

superficial foot of the floor of ordinary dwellings ;
and this is

large enough to cover the weight per superficial foot, even

when a heavier kind of timber, such as Georgia pine, is used.

100. Superimposed Load. We have now to consider

the superimposed weight, or the load to be carried upon the

floor.

101. Greatest Load upon a Floor.* Mr. Tredgold, in

speaking of bridges, says (Treatise on Carpentry, Art. 273):
" The greatest load that is likely to rest upon a bridge at one

time would be that produced by its being covered with peo-

ple." Again he says :

"
It is easily proved that it is about

the greatest load a bridge can possibly have to sustain, as

well as that which creates the most appalling horror in the

case of failure." The floors of churches, theatres, and other

* The substance of the following discussion of the load per foot upon a

floor was read by the author before the American Institute of Architects, and

published in the Architects' and Mechanics' Journal, New York, in April, 1860.
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assembly rooms, and also those of dwellings, are all liable to

be covered with people at some time (although not usually),

to the same compactness as a bridge. Therefore, to find the

greatest strain to which floor timbers of assembly rooms and

dwellings are subjected, it will be requisite, simply, to weigh
the people ; or, to find an answer to the question in the ex-

periments of those who have weighed them.

102. Tredgold's Estimate of Weight on a Floor. Mr.

Tredgold, in the article quoted, says : "Such a load is about

120 Ibs. per foot ;" and again, at page 283 of his Treatise on the

Strength of Iron, he says:
" The weight of a superficial foot

of a floor is about 40 Ibs. when there is a ceiling, counter-

floor, and iron girders. When a floor is covered with peo-

ple, the load upon a superficial foot may be calculated at 120

Ibs. Therefore 120 + 40 = 160 Ibs. on a superficial foot is the

least stress that ought to be taken in estimating the strength

for the parts of a floor of a room."

103. Tredgold's Estimate not Substantiated by Proof.

Mr. Tredgold's most excellent works on construction have

deservedly become popular among civil engineers and archi-

tects. With very few exceptions, the whole of the valuable

information advanced by him has stood the test of the ex-

perience of the last fifty years ;
and notwithstanding that

many other works, valuable to these professions, have since

appeared, his works still remain as standards. Statements

made by him, therefore, should not be dissented from except

upon the clearest proof of their inaccuracy ;
and only after

obtaining ample proof is the statement here ventured that

Mr. Tredgold was in error when he fixed upon 120 pounds

per foot as the weight of a crowd of people.

In the writings of Mr. Tredgold, his positions are gener-

ally sustained by extensive quotations and references
;
but
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in this case, so important, he gives neither reference, data

from which he derives the result, nor proof of the correct-

ness of his statement. This proof must be sought else-

where.

104. Weight ofPeople Sundry Authorities In the year

1848, an article appeared in the Civil Engineer and Architects

Journal, containing information upon this subject. From

this article we learn that upon the fall of the bridge at Yar-

mouth, in May 1845, Mr. James Walker, who was employed

by government to investigate the matter, stated in evidence

before the coroner, that his estimate of the load upon the

bridge was based upon taking the weight of people at an

average of 7 stone (98 pounds) each
;
and admitted that this

was a large estimate, rather higher, perhaps, than it ought

to be
; yet he did so because it was customary to estimate

them at this weight ;
and further, that he calculated that six

people would require a square yard for standing room. At

this rate there would be two persons in every three feet, and

the weight would be 65 pounds per foot.

Herr Von Mitis, who built a steel suspension bridge over

the Danube, at Vienna, estimated 15 men, each weighing 115

Vienna pounds, to a square fathom of Vienna. This, in Eng-
lish measurement and weight, would be equal to 39 men in

every hundred square feet, and nearly 55 pounds per foot.

Drury, in his work on suspension bridges, lays down an

arbitrary standard of two square feet per man of 10 stone

weight. This equals 70 pounds per superficial foot.

In testing new bridges in France, it is usual for govern-

ment to require that 200 kilogrammes per square metre of

platform shall be laid on the bridge for 24 hours. This is

equal to 41 pounds per foot.

The result of combining the above four instances is an

average of 57! pounds per foot.
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But we have a more accurate estimate, founded upon

trustworthy data. Quetelet, in his Treatise on Man, gives the

average weight of males and females of various ages as

follows :

Average weight of males at 5, 10 and 15 years, 61-53
" 20 "

25
"

I35-59
" "

30, 40
"

50
"

140.21

Average weight of females at 5, 10 and 15 years, 57-50

20 "
25

"
116-33

" " "
30,40

"
50

" 121-80

6J 632-96

Total average weight in Ibs. 105-5

105. Estimated Weight of People per Square Foot of

Floor. The weight of men, women and children, therefore,

is 105.5 pounds each, on the average. This may be taken as

quite reliable as to the weight of people. Now as to the

space occupied by them.

It is known among military men that a body of infantry

closely packed will occupy, on the average, a space measur-

ing 15 x 20 300 square inches each. At this rate, 48 men
would occupy 100 square feet, and if a promiscuous assembly
should require the same space each, then there would be a

load of 50-64 pounds upon each square foot. In military

ranks, however, the men would weigh more. Taking the

weight of males from 20 to 50 years, in the above table

this being the probable range of the ages of soldiers the

average is found to be 137-9; a weight of 66 pounds upon
each superficial foot of floor

;
and this weight may be taken

as the greatest which can arise from a crowd of people.
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106. Weight of People, Estimated a a Uve Load.

But this is simply the weight, no allowance being made for

any increase of strain by reason of the movement of the

people upon the floor. We will now consider the increase

made in consequence of the agitation of the weight through

walking and other movements.

In walking, the body rises and falls, producing in its fall

a strain additional to that due to its weight when quiet.

The moving force of a falling body is known to be equal

to the square root of 64^ times the space fallen through in

feet, multiplied by the weight of the body in pounds. By
this rule, knowing the weight and the height of fall, we may
compute the force.

The weight in the present case, 66 pounds, is known, but

the height of fall is to be ascertained. This height is not

that of the rise and fall of the foot, but of the body ; the latter

being less than the former. The elevation of body varies

considerably in different persons, as may be seen by observ-

ing the motions of pedestrians. Some rise and fall as much

as half an inch at each step, while others deviate from a

right line but slightly. If, in the absence of accurate obser-

vation, the rise be assumed at a quarter of an inch, as a fair

average, then the moving force of the 66 pounds, computed

by the above rule, would be 76.4 pounds. This would be the

moving force at the moment of contact, and the effect pro-

duced would be equal to this, provided that the falling body
and the floor were both quite inelastic ;

but owing to the

presence of an elastic substance on the soles of the feet, and

at the joints of the limbs, acting as so many cushions, the

force of the blow upon the floor is much diminished. The

elasticity of the floor also diminishes the effect of the force

to a small degree. Hence the increase of over ten pounds,

as found above, would be much diminished, probably one

half, or, say to six pounds.
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I07L Weight of Military. This six pounds would be the

increase per foot superficial. To make this effect general over

the whole surface of the floor, it is requisite that the weight

over the whole surface fall at the same instant
; or, that the

persons covering the floor should all step at once, or with

regular military step. It will be found that this is the se-

verest test to which a floor of a dwelling or place of assem-

bly can be subjected. In promiscuous stepping the strain

would be much less, scarcely more than the quiet weight of

the people.

108. Actual Weights of men at Jackson's and at Hoes'

Foundries. The above results, it must be admitted, are de-

rived from data with reference to the height of fall, and to

the lessening effect of the elastic intervening substances,

which are in a measure assumed, and hence are not quite

conclusive. They need the corroboration of experiment.

To test them, I experimented, in April, 1860, at the foun-

dry of Mr. James L. Jackson in this city. He kindly placed

at my service his workmen and his large scale. The scale

had a platform of 8^ x 14 feet. It was of the best construc-

tion, and very accurate in its action. Eleven men, taken

indiscriminately from among the workmen of the foundry,
stood upon the platform. Their combined weight while

standing quietly was 1535 pounds, being an average of 139-55

pounds per man. This is but a pound and a half more than

was derived from the tables of Quetelet. It is quite satisfac-

tory in substantiating the conclusion there drawn.*

* In May, 1876, since the above was written, by the courtesy of Messrs. R.

Hoe & Co., of this city, who placed at my disposal their platform scale and men,

I was enabled, by a second experiment, to ascertain the weight of men and the

space they occupy. Selecting twenty-six stalwart men from their smith shop,

they were found to weigh 3955 pounds, and to occupy upon the platform a

space 7 x *1\
= S 2^ square feet, or 753- pounds per superficial foot. This is a
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109. Actual measure of Live Load. After ascertaining

the quiet weight of the men, they commenced walking about

the platform, stepping without order, and indiscriminately.

The effect of this movement upon the scale was such as to

make it register 1545 pounds ;
an increase of only ten pounds,

or less than one per cent. They were then formed in a circle

and marched around the platform, stepping simultaneously

or in military order. The effect upon the scale produced by
this movement was equal to 1694 pounds, an increase of 159

pounds, or over ten per cent. This corroborated the results

of the computation before made most satisfactorily ;
ten per

cent of the weight per foot, 66 pounds, being 6-6 pounds.

As a final trial, the men were directed to use their utmost

exertion in jumping, and were urged on in their movements

by loud shouting. The greatest consequent effect produced
was 2330 pounds, an increase of 795 pounds, or about 52 per

cent.

110. More Space Required for Live Load. This seems

a much more severe strain than the former, but we must

consider that men engaged in the violent movements neces-

sary to produce this increase of over 50 per cent need more

standing room. Packed closely, occupying only 15 x 20

inches (the space allowed per man in computing the weight

per foot to be 66 pounds), it would not be possible to move

the limbs sufficiently for jumping. To do this, at least

twice as much space would be required. But, to keep within

the limits of safety, let only one half more space be allowed.

In this case the 66 pounds would be the weight on a foot

larger average than found at Mr. Jackson's, or than any previous weight on

record, and is accounted for by the fact that these were muscular men, weighing

about 12^ pounds each more than the heaviest hereinbefore noticed, and much

heavier than it were reasonable to expect in assemblages generally.
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and a half, or there would be but 44 pounds on each foot of

surface.

Add to this the 50 per cent for the effects of jumping, or

22 pounds, and the sum, 66 pounds, is the total effect of the

most violent movements on each foot of the floor ; the same

as for the weight of men standing quietly, but packed so

much more closely.

III. 3fo Addition to Strain by Live Load. The greatest

effect, then, that it appears possible to produce by an assem-

bly on a floor, is from the regular marching of a body of men,

closely packed ;
and amounts to 66 + 6-6 = 72-6 pounds per

superficial foot.

This result would show the necessity of providing for ten

per cent additional to the weight of the people. This in

general is not needed, for the conditions of the case generally

preclude the possibility of obtaining this additional strain

upon the floor. The strain of 66 pounds is only obtained by

crowding the people closely together in the whole room.

To obtain the ten per cent additional strain, they must be set

to marching ;
but there is no space in which to march, unless

they march out of the room, and in doing this the strain is

not increased, for the weight of those who pass out is fully

equal to the stress caused by the act of marching.
Were both ends of the room quite open, or were it a long

hall, as a bridge, through which the people could march

solid, the throng being sufficiently numerous to keep the floor

constantly full, then the ten per cent would need to be added,

but not in ordinary cases of floors of rooms.

112. Margin of Safety Ample for Momentary Extra Strain

in Extreme Caes. It may be argued still, that, although the

room be full and marching can only be effected by some of

the people leaving the floor, yet this additional strain will be
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obtained in consequence of the exertion made in the act of

taking the very first step, before any have left the room.

To this we reply that the strain thus produced would not

endanger the safety of the floor, because this strain, when

compared with the ultimate strength of the beams sustaining

it, would be quite small, and its existence be but momentary.
Beams made so strong as not to break with less than from

three to five times the permanent load would certainly not

be endangered by the addition for a moment of only ten per

cent of that load.

113. Weight Reduced by Furniture Reducing Standing

Room. Hence, for all ordinary cases, no increase of strength

need be made for the effects of motion in a crowd of people

upon a floor, and therefore the amount before ascertained,

66 pounds, or, in round numbers, say 70 pounds, may be used

in the computations as the full strain to which the beams

may be subjected. Indeed, the cases are rare where the

strain will even be as much as this. When we consider the

space occupied in dwellings by furniture, and in assembly

rooms by seats, the presence of these articles reducing the

standing room, the average weight per foot superficial will

be found to be very much less.

114. The Greatest Load to be provided for i ?O Pounds

per Superficial Foot. As a conclusion, therefore, floor beams

computed to safely sustain 70 pounds per superficial foot, or

to break with not less than three or four times this, will be

quite able to bear the greatest strain to which they may be

subjected in the floors of assembly rooms or dwellings; and

especially so when the precaution of attaching them to each

other by bridging* is thoroughly performed, thereby ena-

* The subjects of Floor Beams and of Bridging are farther treated in Chap-

ters XVII. and XVIII.



RULE FOR FLOORS OF DWELLINGS. 89

bling the connected series of beams to sustain the concen-

trated weight of a few heavier persons or of some heavy

article of furniture.

MS. Rule for Floors of Dwellings. We now have, by

including the weight of the materials of construction as

shown in Art. 99, the total weight per superficial foot, as

follows :

/= 70 + 20 = 90

for the floors of dwellings. With this value of/, formula (&4-\

i- acfl
2 = Bbd* becomes

J-
ac 90 /* = Bbd 3

or, when a = 4

i$ocl'=Bbd* (25)

116. Distinguishing Between Known and Unknown Quan-

tities. This formula may now be applied in determining

problems of floor construction in dwellings, in which the safe

strength is taken at one fourth of the breaking strength.

In distinguishing between known and unknown quantities,

we will find generally that B and / are known, while c, b and d
are unknown.

From formula (25.) therefore, we have, by grouping these

quantities,

_L
8oT =^ (M-)

(17. Practical Example. Formula (26.) is a general rule

for the strength of floor beams of dwellings.

As an example under this rule, let it be required to find

the sectional dimensions and the distance from centres of the

beams of a floor of a dwelling; the span or length between

bearings being 20 feet, and the material, spruce.
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Here B = 550 and /= 20; and from formula (26.)

i8ox2o2

bd*- = --- = 1300
550 c

118. Eliminating Unknown Quantities We have here

the numerical value of a quotient, arising- from a division of

the product of the breadth and square of the depth, by the

distance from centres at which the beams are to be placed.

Two of the three unknown quantities are now to be as-

signed a value, before the third can be determined. Circum-

stances will indicate which two may be thus eliminated. In

some cases the breadth and depth of the timber arc fixed,

and the distance from centres is the unknown quantity ;

in others, the distance from centres and the depth may be the

fixed quantities, and the breadth be the factor to be found
;

or, the distance and the breadth be fixed upon, and the depth
be the quantity sought for. Generally, the breadth and

depth are assigned according to the requirements of the case,

or simply as a trial to ascertain the scope of the question, and

the distance from centres is the dimension left to be deter-

mined by the formula.

119. Isolating the Required Unknown Quantity. In the

solving of a question of either kind, the formula must first

be transposed so as to remove all of the factors, except the

one sought for, to the same side of the equation ; thus,

bd* , .,,= 130-9 becomes either

or

c =
b

bd2

130-9

Assuming the value of any two of the factors, we select the

proper formula and proceed with the test for the third factor.
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(20. distance from Centres at Given Breadth and Depth.

For example, fix the breadth and depth at 3 and 9 inches.

Then to find c, the above expression,

W*
c = becomes

130-9

130-9 130-9

The value of c being in feet, this gives about i foot 10 inches,

or 22 inches.

121. Distance from Centres at Another Breadth and

Depth. The above result may be considered too great, and

beams of less size and nearer together be more desirable.

If so, assume a less size, say 3x8; we then have

3 x 8
2

102
c ^- -=i-47

130-9 130-9

This gives c equal to about \*j\ inches.

122. Distance from Centres at a Third Breadth and

Depth. With the object in view of economy of material, let

another trial be had, fixing the size at 2\ x 9. In this case

, = 2*X9! = 202-5 = I . S5
130-9 130-9

This gives for c about i8J inches. The answers then to this

problem are,

for 3 x 9 inches, 22 inches from centres,

"3x8 "
\j\

and "
2j x 9

"
i8 " "

These trials may be extended to any other proportions

thought desirable, fixing first the breadth and depth, and

then determining the corresponding value of c. (See pre-

caution, Art. 88.)
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123. Breadth, the Depth and Distance from entre

being Given. Again, it may be desirable to assume a value

for c, and then to ascertain the proper corresponding breadth

and depth. In this case, one of the two unknown factors, b

and d, must also be assumed. Let us fix upon c = 1-5 and

d 8, then the formula in Art. 119,

c l 3O-9 x 1-5becomes b - ^ = 3.07j
- VJ \~> V> \J i -L 1 \~>O t/ ^

or, say 3 inches for the breadth.

1 2 4-. Depth, the Breadth and Distance from Centres

being Given. If the breadth be assumed, say at 2^, then,

with <; = 1.5, to find the depth we have (Art. 119),

d= 8-86 = 8| inches.

Thus, when placed at 18 inches from centres, we have, in

the one case 3x8 inches, and in the other 2^ x 8J inches.

125. General Rules for Strength of Beams. Any other

case of wooden beams for dwellings may be treated in a

similar manner, using formula

Beams of any material for any building may be deter

mined by the general formula

in all cases regarding the caution given in Art. 88,



QUESTIONS FOR PRACTICE.

126. In the floor of a dwelling, composed ot 3 x 9 inch

beams 16 feet long, how far from centres should spruce

beams be placed ?

127. How far if of hemlock?

128. How far if of white pine?

129. In the floor of a dwelling, composed of 2j x 10 inch

beams 19 feet long, how far from centres should spruce

beams be placed?

130. How far if of hemlock?

1 3 I. How far if of white pine ?

132. In a floor of 4 x 12 inch beams 23 feet long, and re-

quired to carry 150 pounds per superficial foot (including

material of construction), how far from centres should spruce
beams be placed, the factor of safety being 4?

133. How far if of hemlock?

134. How far if of white pine ?

135. How far if of Georgia pine?



CHAPTER VII.

GIRDERS, HEADERS AND CARRIAGE BEAMS.

ART. I36 A Girder Defined. By the term girder is

meant a heavy timber set on posts or other supports, and

serving, as a substitute for a wall, to carry a floor.

137. Rule for Girders. A girder sustaining a tier of

floor beams carries an equally distributed load
;
the same per

superficial foot as that which is carried by the floor beams.

In determining the size of the girder formula (24-) is appli-

cable, namely,

\acfl* = Bbd 2

138. Distance between Centres of Girders. In apply-

ing this formula to girders, it is to be observed that c repre-

sents the distance between centres of girders, Avhere there

are two or more, set parallel ; or, the distance from centre of

girder to one of the walls of the building, if the girder be

located midway between the two walls
; or, an average of

the two distances, if not midway. As an example of the

latter case, in a building 30 feet wide, the centre of a girder

is 12 feet from one wall and 18 feet from the other. Here
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139. Example of Distance from Centres. What is the

required size of a Georgia pine girder placed upon posts

set 15 feet apart, the centre of the girder being 12 feet from

one wall and 18 feet from the other; the load per foot super-

ficial of floor, including the weight of the materials of con-

struction, being 100 pounds, and the value of a being taken

at 4?

140. ize of Girder Required in above Example. By
transposing formula (@4-) we have

B

and if the breadth be to the depth in the proportion of, say

7 to 10, then (Art. 80)

*. =

0-5 XAX 15 x 100 x 15* ..
5-- _ d* 1134-45

07x850

d = y U34-45 - 10-43

and b = 0-7 x 10-43 = 7'3-

Therefore the girder should be 7-3 x 10-43 ;
or> to avoid

fractions, say 8 x n inches.

14-1. Framing for Fireplaee, Stairs and Light-wells.

We will now consider the subject of framing around open-

ings in floors, for fireplaces, stairs and light-wells.

142. Definition of Carriage Beams, Headers and TaiB

Beams. Fig. 22 may be taken for a representation of a stair-

way opening in a floor
;
AB and CD being the walls of the
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FIG. 22.

building, A C and BD the carriage beams or trimmers, EF the

header, and the beams which reach from the header to the

wall CD, such as GH, the tail beams.

14-3. Formula for Headers General Considerations.

First, the headers.

The load upon the header EF is equally distributed,

therefore formula (22.) is applicable.

%Ual Bbd 2

The header carries half the load upon the tail beams, or

the load upon a space equal to the length of the header by
half the length of the tail beams. Let g represent the length

of the header, n the length of the tail beams, and / the load

per foot superficial ;
then /, the load upon the header, equals

and, as g here represents /, the length, therefore,
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and formula (22.) becomes

= Bbd*

lafng
2 = Bbd3

I44 B Allowance lor Damage by Mortising. This last

formula should be modified so as to allow for the damage
done to the header by the mortising- for the tenons of the

tail beams. This cutting of the header ought to be confined

as nearly as possible to the middle of its height, so that the

injury to the wood may be at the place where the material

is subject to the least strain.

If this is properly attended to; it will be a sufficient

modification to make the depth of the header one inch more

than that required by the formula. Thus, when the depth

by the formula is required to be 9 inches, make the actual

depth 10; or, for d* substitute (dij, d being the actual

depth. The rule, thus modified, will determine a header of

the requisite strength with a depth one inch less than the

actual depth. This will compensate for the damage caused

by mortising.

The expression in the last article then becomes

\afng> =, Bb(d-lJ

14-5. Rule for Headers. Generally, the depth of a

header is equal to the depth of the floor in which it occurs.

Hence, when the depth of the floor beams has been deter-

mined, that of the header is fixed. There remains then only
the breadth to be found.

We have, for the breadth of a header (from Art. 144)

afng*~-
(See precaution in Art. 88.)
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Example. In a tier of nine inch beams, what is

the required breadth of a white pine header at the stair-

way of a dwelling, the header being- 12 feet long, and carry-

ing tail beams 16 feet long; the factor of safety being 4?

In formula (27.), making a = 4, /= 90, n= 16, g 12,

B = 500 and d 9, the formula becomes

4 x 90 x 1 6 x 1 2
2

b = -
TOT- = 6-48

4 x 500 x 8

The breadth of the header should be 6^, or say 7 inches,

and its size 7x9 inches.

14-7. Carriage Beam and Bridle Irons. A carriage

beam, or trimmer, in addition to the load of an ordinary

beam, is required to carry half the load of the header which

hangs upon it for

support. As this is

a concentrated load

at the point of con-

nection, all mortising

at this point to re-

ceive the header

FIG. 23. should be carefully

avoided, and the requisite support given with a bridle iron,

as in Fig. 23.

148. Rule for Bridle Iron*. In considering the strain

upon a bridle iron, we find that it has to bear half the load

upon the header, and, as the iron has two straps, one on each

side of the header, each strap has to bear only a quarter of

the load upon the header.

We have seen (Art. 14-3) that the load upon the header

equals %fng, where g represents the length ofthe header, n

the length of the tail beams, both in feet, and / the load per
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superficial foot. The load upon each strap of the bridle

iron will, therefore, be equal to

Good refined iron will carry safely from 9000 to 15,000

pounds to the square inch of cross-section. Owing, however,

to the contingencies in material and workmanship, it is pru-

dent to rate its carrying power, for use in bridle irons, at not

over 9000 pounds.

If the rate be taken at this, and r be put to represent the

number of inches in the cross-section of one strap of the

bridle iron, then 9000^ equals the pounds weight which the

strap will safely bear; and when there is an equilibrium be-

tween the weight to be carried and the effectual resistance,

we shall have

\fng-

from which r =
72000

(4-9. Example. For an example, let f = 100, n 16,

and g= 12
;
then

100 x 16 x 12
r - - 0-266

72000

If the bridle iron were made of J by i^ inch iron

(-J-x
i = 0-375) tne SIZG would be ample. For such a header

they are usually made heavier than this, yet this is all that is

needed. It is well to have the bridle iron as broad as

possible, in order to give a broad bearing to the wood, so

that it shall not be crushed.

ISO. Rule for Carriage Beam with One Header. To
return to the carriage beam, or trimmer. The weight to be

carried upon a carriage beam is compounded of two loads
;

one the ordinary or distributed load upon a floor beam, as
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shown in formula (24)\ the other a concentrated load from

the header. Of the former a carriage beam is required to

carry one half as much as an ordinary beam
; or, the load

which comes upon the space from its centre half way to the

adjacent common beam. This is the half of that shown in

formula (2A), or

\acfl
2 = Bbd2

The symbol W in formula (23.) represents the load from

the header, and is equal (Art. 14-3) to \fng. The carriage

beam carries half this load, or %fng ;
hence

\fng = W or, by formula (23.\

mn mn , mn*

Combining this with the formula for the diffused load, we
have

\acfl
2 + afg

"^- = Bbd9
or

This is a rule for the resistance to rupture in carriage

beams having one header. (See Art. 241, and caution in

Art. 88.)

151. Example. As an example, let it be required to show

the breadth of a white pine carriage beam 20 feet long, car-

rying a header 10 feet long, with tail beams 16 feet long,

in a floor of lo-inch beams, which are placed 15 inches

from centres
;
and where the load per superficial foot is 100

pounds, and the factor of safety is 4.

Transposing formula (29) we have

_

b-af
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in which a 4, f 100, c = 15 inches = ij feet, /= 20,

g 10, n 16, m ln = 20 16 = 4, B 500 and

d= 10. Therefore,

2 + .ioxi6
a

x-A-)
--SLZ= 4 x loo x- -=

5oox 10

The breadth required is 5.096, or sa}" 5 inches. The

trimmer should be 5 x 10 inches.

152. Carriage Beam with Two' Headers. For those

cases in which the opening in the floor (Fig. 25) occurs at or

near the middle (instead of being at one side, as in Fig. 22),

two headers are required ; consequently the carriage beam,

in addition to the load upon an ordinary beam, has to carry
tivo concentrated loads.

To obtain a rule for this case the effect produced upon a

beam by two concentrated loads will first be considered.

153. Effect of Two Weights at the Location of One of

Them. The moment of one weight upon a beam is (Art. 56)

W
'-j~.

This is the effect at the point of location of the weight.

A second weight, at another point, will produce a strain at

the location of the first weight. To find this strain, let two

weights, W and V (Fig. 24) be located upon a beam resting

upon two supports, A and B. Let the distance from W to

the support which may be reached without passing the other

weight, be represented by ;;/, and the distance to the other

support by ;/. From V let the distances to the supports
be designated respectively by s and r

;
s and n being

distances from the same support.

The letters W and V, representing the respective

weights, are to be carefully assigned as follows : Multiply
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one of the weights by its distance from one support, and the

product by the distance from the other. Treat the other

weight in the same manner ;
and that weight which, when

so multiplied, shall produce the greater product is to be

called W.

For example, in Fig. 24 let the two weights equal 8000 and

w

FIG. 24.

6000, /= 20, the distances from the 8000 weight to the sup-

ports equal 4 and 16, and those from the 6000 weight

equal 5 and 15.

Then 8000 x 4 x 16 5 12000

and 6000 x 5 x 1 5
= 450000

The former result being the greater, the former weight,

Sooo, is to be called W, and the latter V.

The moment or effect of the weight W at its location is

equal, as before stated, to W -=-. The effect of the weight

V at the point W will (Art. 27) be equal to the portion of V
borne at A, multiplied by the arm of lever m (Arts. 34 and

57). The portion of V sustained by A is (Arts. 27 and 28),

Vj ;
hence the effect of V at W will be Vj x m = V ^.

Adding the two effects, we have

This is the total effect produced at W by the two weights.
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In like manner it may be shown that the 'total effect at

V is

/ /

These are the moments or total effects at the two points

of location. The first, when modified by the factor of safety

a, gives

a
j (Wn + Vs) = Sbd2 = -bd*

(see Art. 35) from which we have

4^( Wn + Vs) = Bbd* (30)

for the dimensions at W. Then, also,

4<t ( Vr + Wm) = Bbd> (31.)

for the dimensions at V.

(See caution in Art. 88.)

Example. When the beam is to be of equal cross-

section throughout its length, as is usually the case, then

formula (30.), giving the larger of the two results, is to be used.

For example, let a weight of 8000 pounds be placed at

3 feet from one end of a beam 12 feet long between bearings,

and another weight of 3000 pounds at 5 feet from the other

end.

Then, as directed in Art. 153,

8000 x 3 x 9 = 216000

3000 x 5 x 7 = 105000

The weight of 8000 pounds having given the larger pro-

duct, it is to be designated by W, and the other weight by V.
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Making a =. 4, we have for the greater effect (form. 30.\

1M
= Bbd*

4 x 4 x x
( 8ocx> x 9 + 3000 x 5 )

= Bbd~ = 348000

and with =$oo, and b=o-jd, we have

B x o-jdx d
2

348000

348000ds -^^ -=004-29
500 x 07

d = 9.98

b = 0-7 x 9-98 = 699

or the beam should be 6.99x9.98, or 7x10 inches.

155. Rule for Carriage Beam with Two Headers and
Two Set of Tail Beam*. Let the rules of Art. 153 be

applied to the case of a carriage beam with two concentrated

loads, as in Fig. 25.

FIG. 25.

When the opening in the floor is midway between the

walls, the two sets of tail beams are of equal length ; or,

m=s
;
and n=r

;
therefore mn=sr. The weights are also

equal ;
therefore Wmn = Vrs

; or, the strains at the headers
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are equal. By moving the opening from the middle, the

weight at the header carrying the longer tail beams is in-

creased
;
so also the product of the distances to the supports

is increased
;

therefore the letter W is to be put at that

header which carries the longer tail beams, for then the pro-

duct Wmn will exceed the product Vrs.

The weight at W is equal to the load upon one end of the

header which is lodged there for support. This is equal to

(Arts. 14-3 and 150) ^fgm ( m being the length of the tail

beams sustained by this header), or W= \fgrn.

In like manner it may be shown that V= %fgs.

By substituting these values of W and V in formula

(30.) we have

In addition to this load, the carriage beam is required to

carry half the load upon a common beam, or half that shown

at formula (24-), or \acfl*. The expression for the full effect

at W therefore is

Bbd* =

Bbd 2 = af[m (mn + s
")f+ \cl* ]

In like manner we find for the full effect at

Bbd* = a/[s (rs + m *) f

(See caution in Art. 88.)
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These two formulas (32. and 33.) give the sizes of the

carriage beam at W and V respectively, but when the

beam is made equal in size throughout its length, as is

usual, the larger expression (form. 32.) is to be used.

156. Example. What is the required breadth of a

Georgia pine carriage beam 25 feet long, carrying two

headers 12 feet long, so placed as to provide an opening
between them 5 feet wide; the tail beams being 15 feet

long on one side of the opening and 5 feet long on the

other
;
the floor beams being 14 inches deep and placed -18

inches from centres
;
the load per superficial foot being 150

pounds, and the factor of safety being 4?

Taking m to represent the longer tail beams, we have

a = 4, 7=150, m=i$, n = 10, J=5, g = 12, /= 25,

c = 1 8 inches = i| feet, B = 850 and d 14.

Formula (32.\ now becomes

850x^x14' = 4XI 5of I 5( I 5 XIo+5
2

)^7 + iXIix2 5
2

*= 'S+' + * = 5-3*

showing that the breadth should be 5.38. The beam may be

made 5^ x 14 inches.

(57. Rule for Carriage Beam wills Two Headers and

One Set of Tail Beams. The preceding discussion, and the

rules derived therefrom, are applicable to cases in which the

two headers include an opening between them. When the

headers include a series of tail beams between them, leaving

an opening at each wall (Fig. 26), then the loads at W and V
are equal ;

for the total load is that which is upon the one

series of tail beams, and is carried in equal portions at the

ends of the two headers a quarter of the whole load at each
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FIG. 26.

end of each header. If by j we represent the length of the

tail beams, we have W= V=\jfg, and from formula (30.)

we have, for the effect at W
y

Add to this half the load upon a common beam, \acfl* (Art.

92), and we have, as the full effect at W,

and, for the size 01 the beam at W,

= Bbd* ($4-)

Similarly, we find for the size of the beam at V,

af-~s (r+ m) + \cl
* = Bbd'
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These are identical, except that s (r+ m) in (35.) occupies

the place of m(n + s) in (34*)- (See caution in Art. 88.)

As in Art. I53, care must be taken to designate by the

proper symbols the weights and their distances. In that

article the proper designation was found by putting the letter

W to that weight which when multiplied into its distances

m and n would give the greater product. Here, as the

weights are equal, the comparison may be made simply
between the two rectangles mn and rs. Of these, that

will give the greater product which appertains to the

weight located nearer the middle of the beam
;
this weight,

therefore, is to be designated by W
y
and will be found at

that header which is at the side of the wider opening. The

distances m and n appertain to the weight W. The

symbols being thus carefully arranged, formula (34-) gives

the larger result, and is to be used when the beam is to be

of equal sectional area throughout.

I58. Example. To show the application of this rule, let

it be required to find the size of a carriage beam in a tier of

beams 12 inches deep and 16 inches from centres, with a

weight per superficial foot of 100 pounds. In this case what

should be the breadth of a white pine carriage beam 20 feet

long between bearings, carrying two headers 12 feet long

each, with one series of tail beams 10 feet long between them,

so located as to leave an opening 6 feet wide at one wall

and 4 feet at the other; the factor of safety being 4 ?

Here we have the two distances m and s equal to 6

and 4, and putting ;;/ for the larger we have a = 4,

/= 100, j 10, -=12, 1=20, m = 6, n 14, 5 = 4,

c = i \, .5=500 and d=i2.

Transposing formula (34) to find b, we obtain



CARRIAGE BEAM QUESTIONS. 109

4X100 [~IOXI2b = -i =x -x6(i4+4) + i><iVx20
2 4-34

500XI2
2 L 20 J

The breadth is required to be 4-34 inches, and the size of

carnage beam, say 4|- x 12 inches. (See caution, Art. 88.)

QUESTIONS FOR PRACTICE.

159. A building, 26 feet wide between the walls, has a

tier of floor beams 12 inches deep and 14 inches from cen-

tres, supported at 16 feet from one of the walls by a gir-

der resting upon posts set 15 feet apart. Upon that side of

the building where the girder is 16 feet distant from the wall

a stair opening occurs, extending 14 feet along the wall, and

6 feet wide. The floor is required to carry 150 pounds per
foot superficial, including the weights of the materials of con-

struction, with a factor of safety of 4. The girder, trim-

mers and header all to be of Georgia pine.

NOTE. The resulting answers to the following questions will be smaller

than if obtained under rules in Chapter XVII. (See Art. 88.)

160. What must be the breadth and depth of the girder,

the breadth being equal to 55 hundredths of the depth ?

161, What should be the breadth of the carriage beams?

162. What should be the breadth of the header?

163. What should be the area of cross-section of the

bridle iron ?
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164. Another opening 6 feet wide in the same tier of

^eams, has headers 10 feet long, with tail beams on one side

6 feet long and on the other side 4 feet long. What

should be the breadth of the carriage beams ?

165. What ought the breadth of the floor beams of the

aforesaid floor to be on the 16 feet side of the girder, if of

white pine ?

166. In the same tier of beams there is still another pair

of carriage beams. These carry two headers 16 feet long,

and the two headers carry between them one series of tail

beams 8 feet long, thus forming two openings, one at the

girder 3 feet wide and the other at the wall 5 feet wide.

What should be the breadth of these carriage beams ?



CHAPTER VIII.

GRAPHICAL REPRESENTATIONS.

ART. 167. Advantages of Graphical Representations.

In the discussion of the subject of rupture by cross-strains,

rules have been given by which the effect in certain cases has

been ascertained
;
for example, that at the middle of a beam

which rests upon two supports ;
that at the wall in the case

of a lever inserted in the wall
;
and that at any given point

in the length of a beam or lever.

These rules are perhaps sufficiently manifest ; but when it

becomes desirable to know the effect of the load in a new

location, or under other change of conditions, an entirely

new computation is needed.

To obviate the necessity for this labor, and to fix more

strongly upon the mind the rules already given, the method

of representing strains graphically, or by diagrams, is useful,

and will now be presented.

168. Strains in a L.ever measured by Scale. In Fig. 27

we have a lever AB, or half beam, in

which the destructive energy or moment
of the weight P, suspended from the

free end B, is equal to the product of

the weight into the arm of leverage at

the end of which it acts (Art. 34) ; or

FIG. 27.

From A drop the vertical line AC = c, make it by any
convenient scale equal to \IP, and join C and B. The tri-
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angle ABC forms a scale upon which the strain produced at

any point in AB may be obtained, simply by measurement ;

for, at any point, D, the ordinate DE
( y), drawn parallel

with the line AC, is equal (measured by the same scale) to

the strain at the point D. In the two homologous triangles

ABC and DBE, we have this proportion :

I 7
CX

*/: c :: x : , ==

-^

By construction c = \IP, therefore

UPx
y =

--f
= px

equals the weight into the arm of lever at the end of which

it acts
;
or Px = y is the destructive energy or moment of

the weight P at the point D.

In this equation (Px y) since P is constant, the value

of y is dependent upon that of x, for however x may be

varied, y will vary in like manner. If x be doubled, y
will be doubled ; if x be multiplied or divided by any

number, y will require to be multiplied or divided by the

same number.

We conclude then that we may assign any value to x

desirable, or select any point in AB for the location of D,

from D draw an ordinate DE, parallel with the line AC,

and measuring the ordinate by the same scale by which c

was projected, find the strain or destructive energy exerted

upon the beam at the selected point D.

169. Example Rule for Dimensions. For example, let

P 100 and / = 20, then AB \l = 10, and

= IO X IOO = IOOO

Now from a scale of equal parts (say tenths of an inch, or

any other convenient dimensions), lay off c equal to ten of

the divisions of the scale
;
then each division represents 100
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pounds and c=iooo = %/P. Draw the line CB, and from

any point D draw the ordinate y. Suppose that y,

measured by the same scale, is found to equal 7^; then

the strain at D equals J\ x 100 = 725 pounds.

If y 6, then the strain at D equals 600 pounds ; and

so of any other ordinate, its measure will indicate the strain

in the beam at the end of that ordinate.

We have, therefore [as in Art. 34, formula (#.)]

Px = Sbd 2

and, with a the factor of safety, and putting for S its

equivalent \B (Art. 35),

or, 4/ter = Bbd* (36.)

It is to be observed that the b and d of this formula

are those required at D, the location of the ordinate y.

When x equals the length of the lever AB, equals -J/,

we have

2Pal = Bbd 2

and if P be taken as W, W being the load at the centre

of a whole beam, we have

2 *%Wal=Bbd*
Wai = Bbd 2

the same as formula

170. Graphical Strains in a Double L,ever. In Fig. 28

we have a beam AB resting .

upon a point at the middle Cy

and carrying the two equal "Tx^ f
loads R and P suspended from j[ \$ fi

the ends.

The half of this beam, or CB,

is under the same conditions of FlG< *8 '

strain as the beam AB in Fig. 27, and since the weights R and
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P are equal, and C is at the middle of AB, the one half of

the beam, or AC, is strained alike with the other half CB.

Therefore a strain at any point in the length of the beam is

measured by an ordinate from that point to the line A WB,
and formula (36.) is applicable to this case also, conditioned

that x does not exceed ^/.

171. Graphical Strains in a Beam. In Fig. 29 we have a

beam AB, resting upon two supports A and B, and loaded

at middle with the weight W,

one half of which, R, is borne

upon A, and the other half, P,

is supported by B.

This beam has the same

strains as that of Fig. 28, there-

FlG - 29- fore (see Art. 26) the same

formula (36.) is applicable, namely :

tfax = Bbda

P= ^W, and by substitution

(37.)2 Wax = Bbd 3

a rule applicable to this case, conditioned that x shall not

exceed /.

When x = / then we have

Wai = Bbd2

the same as given in formula (21.).

Again, if x be diminished until it shall reach zero, then

2 Wax = o

or the strain is nothing. This is evidently correct, as the

effect of the weight, in producing cross-strain, disappears at
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the edge of the bearing. We are not to be permitted, how-

ever, in shaping the beam to its exact requirements, to re-

move all material at and upon the bearing wall, for there

is another strain, known as the shearing strain, for which

provision is to be made at the end of the beam.

This strain we will now consider.

(72. Mature of the Shearing Strain. The nature of the

shearing strain, as well as of the cross-strain, is very clearly

shown in Fig. 30, a diagram suggested by a similar one

in "Unwin's Wrought-Iron Bridges and

Roofs, London, 1869."

In this figure a semi-beam, AB, fixed

in a wall at A, is cut through at CD, and

the severed piece, CB, is held in place

by means of a strut at D and a link at

C, which resist the compression and ten-

sion due to the cross-strain arising from

the weight P
; and by the weight R

(equal to P
) suspended over a pulley E,

FIG. 30.

which prevents the severed beam from sinking, or resists

the shearing strain.

As the link C and strut D are both acting in a horizon-

tal direction, they can have no effect in resisting a vertical

strain, consequently the weight P must be entirely sustained

by the counter-weight R, and as the action of the latter is

directly opposite to that of the former, it must be equal to it

in amount.

In the above arrangement we may see that were the

strut D removed, the beam CB, under the action of the

weight Pj would revolve upon C as a centre, closing the

gap at the bottom ; hence the strut D is compressed.
In like manner, if the link at C were removed, the
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weight P would cause the beam to revolve on D, making
wider the opening at the top, and showing that the link C
is in tension. If the tension at C be represented by /, the

compression at D by c, and the depth CD by d, then

td = cd=Px CB

Disregarding the weight of the beam, the shearing strain

at CD equals the weight P. As this strain is wholly inde-

pendent of the distance between C and B, the beam may
be cut at any point in its length with a like result as to the

amount of the shearing strain. At every point we shall

have R = P, or the shearing strain equal to the weight.

If the weight of the beam be included in the considera-

tion, the shearing strain at any point will equal the weight

P plus the weight of so much of the beam as extends beyond
the point at which the shearing strain is considered.

Let CD be the cross-section at which it is required to

find the shearing strain ;
let JT equal the distance from this

cross-section to B, in feet ;
and let e represent the weight

per foot lineal of the beam
;
then the weight of the piece CB

will equal ex, and the shearing strain at CD will equal

P+ ex
y or the destructive energy is

D == P + ex

f73. Transverse and Shearing Strains Compared. Be-

fore this formula can be available, it is needed to know the

resistance of the different materials to this kind of force.

Experiments have been made upon wrought-iron which

show that its shearing resistance is about seventy-five per

cent of its resistance to tension. If, in the absence of the ex-

periments necessary to establish the resistance to shearing

in materials generally, it be assumed that they bear the
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same proportion to their tensile resistance as is found in

wrought-iron, this shearing strength may be put equal to

in which T equals the absolute resistance to tension per

square inch of cross-section.

The resistance of certain woods to tension may be found

in Table XX.

When D = R we have

P+ex= \Tbd

This gives bd, or the area of cross-section, equal only to the

destructive energy. In this case rupture would ensue. We
therefore introduce the factor of safety, a, and have

a(P+cx)=\TV& (38}

The portion of T considered safe is from one sixth to one

ninth. We then have a 6 to a = 9.

As an example: Suppose a semi-beam (as AB, Fig. 30)

of white pine to be 10 feet long, and loaded at the end with

P= 10,000 pounds ; what would be the required area of cross-

section at the wall ?

Here the weight of the beam is so small in comparison
with the load P that it may be neglected in the computation.

Throwing it out of the formula, we have

(39.}

Let a 9 and T = 12000 ; then

loooo x 9 = {.
x 1 2000 x bd

10000 x o
-?-bdiQ

Jxl2OOO
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To compare this requirement with that for the cross-

strain, we make use of the formula for this strain, (19.),

4Pan = Bbd*

and, making a = 4, have

4 x 10000 x 4 x 10 500 x bd a

4 x 10000 x 4x 10 .

=W = = 3200

and, making d = 16, have

b x i6
2 = 3200

therefore the area will be 12^ x 16 = 200 square inches.

This is the area required at the wall, but at the end B,

the point of attachment of the weight, we have seen (Fig.

27) that the destructive energy in cross-strain is zero.

Were this the only effect produced by the weight P, the

beam might be tapered here to a point. Owing, however,

to the shearing effect of the weight, we find, as above, a

requirement of material equal to 10 inches in area, or the

beam 12^ inches wide would require to be eight tenths of an

inch thick
;
and the rope supporting the weight should be so

attached as to have a bearing across the whole width of the

piece.

174. Rule for Shearing Strain at Ends of Beams.

The shearing strains at the two supports upon which a beam

is laid are together equal to the weight of the beam and the

load laid upon it. If the beam be of equal cross-section

throughout its length, and the load upon the beam be located

at the middle, or symmetrically about the middle, then the
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weight of the beam and its load will be sustained half upon

each support. In this case, the shearing strain at the two

supports will be equal, and each equal to half the total load.

Putting W for the load upon the beam, and el for the weight

of the beam, then for the shearing strain at each end of the

beam we have

Putting this equal to the safe resistance [see formula (38,,),

Art. 173] we shall have

(W+ el)
= \Tbd

bd (40.)

When the load is not at the middle nor symmetrically

disposed about the middle, the portion borne upon each

support may be found by formulas (3.) and (4>), Art. 27. The

shearing strain at each support is equal to the reaction of

the support or to the load it bears.

175. Resistance tio Side Pressure. Beyond the fore-

going considerations, there is still another of some impor-

tance. Care should be taken that the surfaces of contact of

the wall and the beam are of sufficient area to be unyielding.

Usually the wall composed of brick or stone is so firm that

there need be no apprehension of its failure, and yet it is

well to know that it is safe. It should, therefore, be carefully

considered, to see that the given surface is sufficiently large

for the given material to carry safely the weight proposed to

be distributed over it. In calculations for heavy roof trusses

this precaution is particularly necessary.

The upper surface of the joint, or underside of the beam,
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requires. especial attention. This is usually of timber, and

parallel with the fibres of the material. The pressure upon
the surface tends to compress these fibres more compact!)

7

together by closing the cells or pores which occur between

the fibres. When pressed in this way, timber is much more

easily crushed, as may readily be supposed, than when the

pressure is applied at the ends of the fibres in a line parallel

with their direction.

The resistance to side pressure approaches the resist-

ance to end pressure in proportion to the hardness of the

material.

By experiments made by the author some years since, to

test the side resistance, results of which are recorded in the

American House Carpenter, page 179, it appears that the hard-

est woods, such as lignum-vitae and live oak, will resist about

i times the pressure endwise that they will sidewise
; ash,

if times
;
St. Domingo mahogany, twice; Baywood mahog-

any, oak, maple and hickory, about 3 times
; locust, black

walnut, cherry and white oak, about 3^ times
; Georgia pine,

Ohio pine and whitewood, about 4 times ; chestnut, 5 times
;

spruce and white pine, 8 times
;
and hemlock, 9 times. Their

resistance to side pressure is in proportion to the solidity of

the material, or inversely in proportion to the size of the

pores of the wood.

In the above classification, the comparison is not that of

the absolute resistance of the several kinds of wood to side

pressure. It is only a comparison of the results of the two

pressures on the same wood. Whitewood, classed above

with Georgia pine, resists sidewise only as much, absolutely,

as white pine. Its power of resistance to end pressure is the

lowest of any of the woods, being but one half that of white

pine.

The average effectual resistance to side pressure per

square inch of surface, /, for
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Spruce =250 pounds.

White pine = 300
"

Hemlock = 300
"

Whitewood = 300
"

Georgia pine 850

Oak = 950

Under these pressures only a slight impression is made,

and the woods may be safely trusted with these respective

amounts.

176. Bearing Surface of Beams upon Walls. The sur-

face of ,the beam in contact with the wall must be sufficient

in extent to insure that it shall not be exposed to more pres-

sure than is above shown to be safe. If b equal the breadth

of the beam, h the length of the bearing surface, and p the

resistance per inch, as above, then the total resistance equals

R = bhp

The destructive energy for one end of the beam is, as

before (Art. 174),
D =

When there is equilibrium, then R = D, or

l)
= bhp

Owing to the deflection of the beam by the load upon it,

its extreme ends may be slightly raised from off the bearing

surface, and in consequence the pressure be concentrated at

the edge of the wall. No serious effect will ensue from this,

for if the pressure be greater than the timber can resist at

the edge, the fibres will be crushed there, but only suffi-

ciently so to allow the surface of contact to extend towards
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the end of the beam, until it is so enlarged as to effectually

resist any further crushing.

Beams which are likely to be depressed considerably

should have their ends formed so that their under surface

will coincide throughout with the wall surface when the

greatest load shall have been put upon them.

177. Example to Find Bearing Surface. Let a white

pine carriage beam 6 inches wide, 24 feet long between

bearings, and weighing 15 pounds per lineal foot, be loaded

with 12,000 pounds, equally distributed over its length.

What should be the length of the bearing upon each wall ?

By transposition, formula (41.) becomes

W+el = k
2bp

In this case, W 12,000, e 15, / = 24, b 6, and

p = 300; then

12000 + 15x24 ,

? = h = 3.43
2x6x300

or the end of the beam must extend upon the wall, say 3^

inches. The usual bearing for floor beams, which is 4

inches, would in this case be amply sufficient.

Where the concentrated weight is so large in comparison
with the weight of the beam, the latter Aveight may be neg-

lected without any serious result
;
for had we considered the

12,000 pounds only, in the above example, the value of h

would have been 3.33, only a tenth of an inch shorter than

the former result.

178. Shape of Side of Beam, Graphically Expresed.
As will be observed, we have digressed from the principal

subject. This became necessary in order to explain the

apparently anomalous result of leaving the beam without any
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support at the ends. For it was seen that in an application

of the formula for cross-strains the requirement of material

gradually lessened towards the ends of the beam, until at

the very edge of the bearings it entirely disappeared.

To prevent the beam, with its load, from falling as a dead

weight between the bearings ; or, to provide against the

shearing strain, as well as against the crushing of the material

upon its bearings, we have turned aside so far as seemed to

be needed. And before returning to the main subject, it may
be well here to show that the line CB in Figs. 27 and 29, limit-

ing the ordinates of cross-strain in the lever and beam, does

not show, as might be supposed, the shape of the depth of a

lever or beam having a cross-section of equal strength

throughout its length. A short consideration of the relation

between the strains at given points in the length will show

the true shape.

By construction, c, Fig. 27, is equal to %tP, and from this

we have shown (Art. 168) that

and when the destructive energy and the resistance are

equal

\lP^Sbd 2 and

Px = Sbdf from which

c\y\\ Sbd* : Sbdf and when

S and b are constant

c : y : : d 3
: df

or, the ordinates are in proportion to the squares of the

depths, and not directly as the depths themselves.

From these ordinates, however, the shape of the side of

the lever may be directly found by taking their square roots.

For let AB in Fig. 3* be the upper edge of the lever, and
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T t

CB the line limiting the ordinates of cross strain. Then, if

AD be made equal to the square

root of AC, and, corresponding-

ly, d
t ,
din d

ilit etc., be each made

respectively equal to the square
root of the ordinate upon which

it lies, and if a line be drawn

through the ends of dn d
:t ,

d
llt ,

etc., this line, DEB, will limit the

shape of the lever.

This curve line is a semi-para-

bola, with its vertex at B and

its base vertical at AD. By con-

struction, each ordinate y is in proportion to x, its dis-

tance from B, or (since y equals d2

)
d2

is in proportion to

x, a property of the parabola. Hence to obtain the shape of

the lower edge of the lever, any method of describing a para-

bola may be used, making AD, its base, equal to (form. 19.)

FIG. 31.

FIG. 32.

Bb

As a whole beam is in like

condition with two semi-beams,

as to the cross strains, there-

fore the shape of a whole beam

of equal strength throughout
its length is that given by two

semi-parabolas placed base to

base, as in Fig. 32.



QUESTIONS FOR PRACTICE.

(79. In a semi-beam, or lever, 10 feet long, fixed in a

wall, and loaded at the free end with 3672 pounds, what is

the destructive energy at the wall ?

180. Make a graphic representation of the above by a

horizontal scale of one foot to the inch, and a vertical scale

of 1000 foot-pounds to the inch. What is the height CA of

the triangle of cross-strains, in terms of the scale selected ?

(81. Measuring horizontal distances from the free end,

what are the lengths, by the scale, of the respective ordinates

at the several distances of 5, 6, 7, 8 and 9 feet; and what

the amount of cross-strain corresponding thereto at these

several points in the beam ?

182. What will be the required depth at the wall, and at

9 and 8 feet respectively from the free end
;
the lever being

of Georgia pine, 6 inches broad, and the factor of safety 4?

183. In a white pine beam, 4 inches broad, 16 feet long

between bearings, and loaded at the middle with 3250

pounds, what should be the respective depths at the several

distances of 3, 5, 7 and 8 feet from one end, the factor of

safety being 4?

184. A white pine semi-beam, 12 feet long and 4 inches

broad, is loaded with 693 pounds at the free end, including

the effect of the weight of the beam itself. The factor of

safety is 4, the beam is of constant breadth and depth
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throughout its length, and its weight is 30 pounds per cubic

foot.

What is its required depth at the wall ?

What is the weight suspended from the end of the beam ?

What is the shearing strain at the wall ?

What is the shearing strain at 5 feet from the wall ?

185. A beam of Georgia pine, 4 inches broad and 20 feet

long, is loaded at the middle with 9644! pounds. The beam
is 17 inches high at the middle, and tapered in parabolic

curves to each end. The material of the beam is estimated

at 48 pounds per cubic foot. What is the weight of the

beam?

186. What is the shearing strain at each wall ?

With a factor of safety of 9, how high is the beam

required to be at the ends to resist the shearing strain safely ?

(87. How far upon each wall is the beam required to

extend, in order to prevent crushing of the material ?



CHAPTER IX.

STRAINS REPRESENTED GRAPHICALLY.

ART. 188. Graphic Method Extended to Other Cases.

In Figs. 27, 28 and 29, with a given maximum strain upon a

semi-beam, or upon a full beam, we have a ready method of

finding the strain at any given point in the length.

This simple method of ascertaining the strain at any

point, graphically, is based upon a principle which is applic-

able to strained beams under conditions other than those

given, as will now be shown.

189. Application to Double Lever with Unequal Arms.

In Figs. 28 and 29 the load upon the beam is at the middle.

But it may be shown that the triangle of strains is applicable

in cases where the load is not at the middle.

Let R and P, Fig. 33, represent two unequal weights,

FIG. 33.

suspended from the ends of a balanced lever AB. From

the law of the lever, we have (Art. 27)

Rm Pn
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If CD, called g, be made of a length to represent Pn, then

will it also represent Rm
;

for Rm = Pn. Hence, since the

triangle BCD is the triangle of strains, in which an ordinate,

y, showing the strain at any given point in DB, may be

drawn, therefore the triangle ACD will give ordinates, y' ,

measuring the strains at the points in AD, from which they

may be drawn ; or, since

Pn : g : : Px : y

>.*n
so also

Rm : g :: Rx' : /

(4$-)

f90. Application to Beam with Weight at Any Point.

In Fig. 34, AB represents a beam supported at each end,

carrying a load W at a point nearer to A than to B. This

w

FIG. 34.

beam is strained in all respects like that in Fig. 33, except

that the strains are in reversed order. Therefore an ordi-

nate, y, drawn across the triangle BCW, will indicate the

strain at the point of its location. So an ordinate, /, across

the triangle ACW, will indicate the strain at its point of
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location. Or, generally, the two triangles ACW and BCW
limit the ordinates \vhich measure the strains at any point in

the length of the beam. Thus when

g =. Pn = Rm we have

y Px and / = Rx'

and since P= W and R = Wj (Art. 27)

we have y = W ~, x (44-)

y<=W
U

jx> (45)

Now, since Rm Pn =g, equals the destructive energy of

the weight at its location, therefore any ordinate across the

triangles ACW and BCW equals, when measured by the

same scale, the destructive energy at the location of that

ordinate, and when the resistance is equal to the destructive

energy we have for the strain at any point to the right of

the weight

Putting for 5 its equivalent \B (Arts. 35 and 57) to agree

with the unit of dimensions, we have, for the safe weight,

(46.)

which, with x at its maximum equal to n, is identical with

formula (23).

For the safe weight at any point to the left of the weight
we have

4Wajx'=zBbd* (47.)

191. Example. As an example in the application of

these expressions, let it be required to find the strains at
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various points in the length of a white pine beam, the

maximum strain being given.

Let the beam be 10 feet long and loaded with 2000

pounds at a point three feet from the left-hand end.

What is the strain at the location of the weight? What
are the several strains at 2, 4 and 6 feet from the right-

hand end and at 2 feet from the left-hand end ?

Take first the strains to the right.

.m
Here, by formula (44-), y = W jx,

and with x at its

maximum we have

y 2000 x x 7 = 4200

In Fig. 35, make the length between the bearings A and

B by any scale, equal to 10 feet, and CW, or g, equal to

42 units of any other scale. Then each of these units will

\ s
\

I >--"-

FIG. 35.

represent 100 pounds of strain. The number of units in

the length of the ordinates, y, at the several distances, x

equal to 2, 4 and 6 feet, and of x' 2 feet, will give, when

multiplied by TOO, the strains at these several points.

Thus it will be found that,
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at 2 feet from B, y 12, and 12 x 100 1200;

"
4

" "
B, y = 24,

"
24 x 100 2400 ;

" 6 " "
B, y 36,

"
36 x loo = 3600 ;

and " 2 " "
A, y' 28,

" 28 x 100 = 2800.

Now, if it be required to find the proper depth of the

beam at these several points, we take, for the right-hand

end, formula

in which W represents 2000 pounds, the weight upon

the beam, and in which
W-j-x

will give the strain at each

ordinate
;
and by transposition have

and if a = 4, B 500 and b = 3, we have

500 x 3 x 10
= 6

and therefore

when x 2 then ^ 2 = 6-4x2=J2-8 and ^=3.58
4:^4 " d 2 = 6-4x4^25-6 " ^=5.06
^r = 6 " ^' = 6.4x6 38-4

" ^=6.20
" x=n = ?

" d* 6-4 x 7 =44-8 "
^=6-69

For the left-hand end we use formula (47-)
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4 X 2000 X 4 X 7d 2 = -- ^x'iA.-^x1

500 x 3 x 10

and hence,

when x' = 2 then */' = 14-93 x 2 = 29-9 and </ 5-47
" y = i=3 "

;/*:=: 14-93 x 3 =44.8 " d = 6-6g

This last result agrees with the last from the right-hand

end, as it should, for they are both for the same location.

The above results are all obtained by computations, but the

value of d*, at as many points as may be desired, can be

obtained by scale, in a similar way with the ordinates for the

destructive energy ;
but this scale, for the purpose of obtain-

ing the depths, must be made with the principal ordinate, gt

equal to the requirement

(see form. #$.), and then the square root of each ordinate

drawn across the scale will be the required depth at its

location.

For example : Make g, by any convenient scale, equal

to 44-8 as above required ;
then the several values of d* at

2, 4 and 6 feet may be found by measuring the ordinates

drawn at these several distances from B.

The square root of each ordinate will equal the depth of

the beam there. The results obtained by measurements,

although not exact to the last decimal, are yet sufficiently

exact for all practical purposes. If it be required to find the

exact dimension, this may be done by computation, as shown,

and the diagram will then serve the very useful purpose of

checking the result against any serious error in the calcula-

tion.
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192. Graphical Strains toy Two Weiglit. The value of

graphic representations is manifest where two or more

weights are carried at as many points upon a beam.

In Fig, 36 we have a beam carrying two weights A' and Br

.

The destructive energy of the weight A', at its location,

is equal to (Art. 56)

and the destructive energy of the weight B'
', at its location,

is equal to

D" = B' ~

mn
Make AE equal to

A'-j- by any convenient scale. By the

TS
same scale make BF equal to

B'-j-.
Draw the lines CE and

DE, CF and DF.

Now, while AE represents the effect of the weight A 1

at

the point A, so also AG measures (A rt. 190) the effect, at the

same point, of the weight B' ; therefore make EJ equal to

AG, then AJ is the total effect at A of both weights.
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In like manner (FK being made equal to BH), BK
measures the total effect at B. Draw the line CJKD. and

by dropping a vertical ordinate from any point in the beam
CD to this line, we have the total strain in the beam at

that point.

193. Demonstration. The above may be proved, as

follows :

First. Let the ordinate occur between the two weights
as LM, Fig. 37.

Extend the lines CF, DE and JK, till they meet at R
and 5, and draw CR and DS.

FIG. 37.

Now the effect of B' at B, is measured by BF, and at L

by LP (Art.\B9). Also the effect of A' at A, is measured

by AE, and at L by LN. The joint effect of A' and B'

at L, is thus LP+LN, and if it can be shown that PM
equals LN, then

LP+LN=LP+PM = LM

equals the joint effect of the two weights A' and ', at L.

In two triangles of equal base and altitude, two lines

drawn parallel to the respective bases, and at equal alti-

tudes, are equal; from which, conversely, if two triangles of

equal base have equal lines drawn parallel to the base, and
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at equal altitudes, then the altitudes of the two triangles

are equal. In the present case we have AE = GJ\ for

A G EJ by construction
;
and if, to each of these equals

we add the common quantity GE, the sums will be

equal, or

AE= GJ

The two triangles ADE and GSJ are therefore standing

upon equal bases, AE and GJ.

Moreover, at equal distances, AB, from the line of bases

AJ, and parallel with it, we have the two lines BH and

FK, made equal by construction. Consequently, the two

triangles have equal altitudes. Hence all lines drawn across

them, parallel with and at equal distances from the base, are

equal, and therefore LN and PM, having these properties,

are equal, and LM=LP+LN equals the true measure of

the strain induced at L by the weights A' and B'
; or, in

general, any vertical ordinate drawn across AJKB will

measure the total strain caused by the two weights at the

location of the ordinate.

Damonsfration Rule for the Varying Depths.
Second. Let the ordinate occur at one end, between B and

D, as OQ, Fig. 37.

Here we have OT for the strain caused by A', and
OV for the strain caused by B'

; or the total strain equals
OT+OV.

Now if VQ can be proved equal to OT, we shall have

equal to the total strain at O.

We have the two triangles BDH and FDK, with bases
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W

BH and FK, made equal by construction, and with equal

altitudes BD, and we have the two lines OT and VQ
drawn parallel with, and at equal altitudes

(
BO

)
from the

base; consequently OT and VQ are equal, and OQ meas-

ures the total strain of the two weights at O\ or, in gene-

ral, any vertical ordinate drawn across BDK will measure

the total strain at the location of the ordinate.

Since it may be shown in like manner that any vertical

ordinate drawn across ACJ will measure the total strain at

its location, therefore we conclude that a vertical ordinate

from any point in the beam CD to the line CJKD will

show the total strain in the beam at that point.

In practice, the scale of strains CJKD may be con-

structed as just shown, in detail, but more directly by

obtaining the points J and K in the following manner :

We have for the joint effect of the two weights at the

location of one of them, A, (see Art. 153)

which becomes, on changing W and V into A 1 and B f

,

**'"\'+ffs) (51.)

equals the length ol the ordinate AJ.



TWO WEIGHTS STRAINS AND DEPTHS. 137

In like manner we have

(52.)

for the length of the line BK.

The points J and K are to be obtained by these expres-

sions. The scale is then completed by connecting these

points and the ends of the beam by the line CJKD. The

strain at any point in the beam may then be readily meas-

ured, sufficiently near for all practical purposes.

If, however, the exact strain is desired, this may be

obtained as follows :

Putting g for AJ, p for BK, and // for AB, we have

for the several ordinates

s : p :: x : y

y=tx (53.)
S

m : g : : x' : y
r

h p-g ::.*": y"-g
h(y"-g) = x(p-g)

hy"-hg = x"(p-g)

hy" = x"(pg) + hg

If it be required to know the depth of the beam at every

point, to accord with the strain there, then, instead of mak-

ing the two principal ordinates as above shown, find their

lengths thus :
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By formulas (30.) and (51.) make AJ equal to

m

d* = (56.)

Bb

and by formulas (31) and (52.) make BK equal to

4a-(B'r + Am)
(57.)

Draw the line CJKD, and then an ordinate drawn

across this scale at any point will give the square of the depth

at that point. The square root of this length will be the

required depth there.

195. Graphical Strains by Three Weights. In Fig. 38

we have a graphical representation of the strains resulting

from three weights.

FIG. 38.

This figure is constructed by making AJ equal to the

moment of A' at A, BK equal to the moment of B' at

B, and CL equal to the moment of C' at C, all by the same
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scale. Connect J, K and L each with the ends of the

beam E and D. Make JF equal to AM + AN, KG
equal to BO + BP, and LH equal to CQ + CR.

Join E, F, G, H and D, and this line will be the boun-

dary of any vertical ordinate from any point in ED, which,

by the same scale as used for AJ, etc., will measure the

strain at the location of the ordinate.

In this diagram, the points F, G and H may be found

directly, as follows :

To find F, we have (Art. 153) A'~ for the effect of A',

B'J- for B f

,
and so, in like manner, we may have C'

~j-

for that of C'. Added together, these will equal

AF = (A'n + B's + C'v ) (58.)

To find G
t we have A'^ for A', B'-- for B f

, and

C-r for C ;
which together give

n^ A'ms + B'rs + C'rv
>(JT =

To find H, we have A f~ for A', B'~ for Bf

,
and C~

for C
;
which added, will equal

CH -(A'm + B f

r -

If it be desirable, the strains may, as in the last figure, be

computed ;
for putting g for AF, p for BG, k for CH,

h for AB, and q for BC, we have, for an ordinate between

C and D,
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FIG. 38.

v : k : : x : y

9*& ^
For an ordinate between E and A we have

m : g : : x' : y'

m

For an ordinate between A and B we have, as in Fig. 37,

y" =
h (63)

and for ordinates occurring between B and C we have

y = tJLx"> + k (64.)

These expressions give the strains at any point, due to the

three weights.

In like manner, we may find the strain at any point in a

beam, arising from any number of weights.

To obtain the squares of the depths at various points by

scale, make AF equal to
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Make BG equal to

A'ms'+ B'rs + Crv

Make CH equal to

4a^(A'm + B'r + Ct)
/ fay \

d 2 = : (67 -)

Bb

The square roots of ordinates upon this scale will give

the depths required at their several locations.

196. Graphical Strains by Three Equal Weights Equa-

bly Disposed. Let us now consider the effect of equal

weights, equably disposed.

In Fig. 39 we have three equal weights, L, placed at equal

distances apart upon a beam, ED, the distance from either

wall to its nearest weight being one half that between any
two of the weights ; or,

EA - CD =

The line EFGHD is obtained as directed for Fig. 38. It

may also be obtained analytically, thus :

First. The line AF, or the effect at A of the three

weights, equals the sum of the three lines AJ, AO and

AN.
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FIG. 39.

Let EA = CD = t, and AD h, then t + h = /, and

(Art. 56)
tx/t th

as per Art. 195.

CDxEA _ fr//x* t
/A

-L--J-- -L
t

- -^L
t

or
th . th

Second. The line BG, or the effect at B of the three

weights, is equal to the sum of the line BK and twice the

line BQ.
Let EB = /, BD h, and / + // = /; then

TBK = Z--

th
and
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Third. The effect at C produced by the three weights is

equal to that at A.

We have, then,

for the total effect at A, AF =

B,

tt tt

th

I

th

197. Graphical Strains by Four Equal Weights Equably

Disposed. When there are four equal weights, as in Fig. 40,

similarly disposed as in Fig. 39, the effect at A is,

\
'M

-.-v--- ..

I

FIG. 40.

from load at A,
hxt

L~ ~~

ht

C,

"
'JD,

ht

~T

ht
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or the total effect at A, of the four weights, is

The effect at B is,

from load at A, L^-j^
= \L-r

C,

or the total effect at Z?, of the four weights, is

The effect at C is equal to that at B, and the effect at

D is equal to that at A.

198. Graphical Strains by Five Equal Weights Equably

Disposed. When there are five equal weights, as in Fig. 41,

similarly disposed as those in Fig. 39, the effect at A is,

Thxt T ht
from load at A, Lj- %L-j

B, ^hxt-^lL

11

C, |A:X-/ 7.=|y

" M,
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L L L L L

ABC M

or the total effect at A, of all the weights, is

The total effect at B is,

from load at A,

c.

II tt

" M,

ht

-j-

ht-
l

-

y

-f

or the total effect at B, of all the weights, is
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The total effect at C is,

from load at A, ty x h- \L^/ /

, =

or the total effect at C, of all the weights, is

7

The effects produced at D and J/ are, respectively, like

those at B and A.

199. General Result* from Equal Weights Equably Dis-

posed. In looking over the results here obtained, it will be

seen that in each case the effect is equal to gLr, in which

g is put for the numerical coefficient, L for any one of the

equal weights with which the beam is loaded, / and h the

respective distances from the point at which the strain is

being measured to the ends of the beam, and / for the length

of the beam. All of these are simple quantities except the

coefficient g, and this it will be shown is subject to a certain

law and may be stated in general terms.



TOTAL STRAIN AT LOCATION OF FIRST WEIGHT. 147

200 a General Expression for Full Strain at First Weight.

The coefficient g is a fraction, having its numerator and

denominator both dependent upon the number of weights

upon the beam.

Let us first consider the value of the numerator in

measuring the effect of the weights at A, the location of the

first weight from the left.

With three weights, g, the coefficient, was | + f + | = f,

the numerators being 1 + 3 + 5=9.

With four weights, g was equal to - =
, the

numerators being 1+3 + 5 + 7=16.
I I ^ I I 7 I Q 25

With five weights, g was equal to - =
,

and the numerators 1+3 + 5 + 7 + 9 = 25.

In general, we shall find that the numerator of the frac-

tion g, is in all cases equal to the sum of an arithmetical

progression comprising the odd numbers i, 3, 5, etc., to n

terms
;

;/ being put to represent the number of weights

upon the beam, the first term being unity, and the last being

2n\.
To find the sum of this progression, we have

in which S = the sum, a the first term, / = the last term,

and n = the number of terms ; or

_ I + (2n i)n n + 2n 2 n
O > r^ n: ft'

Hence, the numerator of the coefficient of the expression

showing the effect of any number of weights at the location,

A
y
of the first weight, is equal to the square of the number

of weights ; thus, when there are
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2 weights, n = 2, and the numerator = 2
2 = 4

3
" =

3,
" " = 3

2 - 9

4 = 4
" " = 4

2 = 16

5
"

=5. " " =
5

2 = 25

6 = 6,
" " = 62 = 36

and so for any number of weights.

In considering the value of the denominator of g it will be

observed that it is derived by taking the value of h in each

case in terms of /. With three weights, // = 5^ ;
with four

weights, // = 7/ ;
and with five weights, // = qt ;

so that in

general, h-=-(2n\)t. The denominator of the fraction

generally, therefore, is 201.
n a

The value of the coefficient is, consequently, , and

the full effect at A of any number of equal weights equably
'

_ ///

disposed upon a beam is - L .- .2n\ I

201. General Expression for Full Strain at Second

Weight For the effect at the location B we have the ex-

pression pL.-_ ;
in which the same quantities occur as before,

except in the case of the coefficient /.

This coefficient is composed of two classes of fractions.

The first of these is based upon the relation between the dis-

tances EA and EB, and since EA is in all cases equal to
-J-

of EB, therefore this part of the coefficient / will be equal

to i
In the second fraction of the coefficient, the numerator is,

as in the case at A, equal to the sum of an arithmetical pro-

gression, but extending one less in the number of the terms,

so that in place of n s we put (n i)
2

.

The denominator is found by taking ;/ i for
,
or

2(01)!, equal to 203, for 201. The value of
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this fraction is therefore - -~
. To this, adding the first

fraction, we have

2/2-3

and for the full effect at B, of all the weights,

(t+ -<!=%*V z 3/ /

From the above, the value of the coefficient / is as follows

(2 if
with 2 weights, / = i +

^-x2)
_

3
=i + -f =|

'
3

"
, = t + =- = i + i =V

"
5

The numerators of these results are in the order of 2n,

$n, Sn, nn and 14;?; the numerals differing by 3. The de-

nominators are the products of i, 3, 5, 7 and 9, each by 3.

We may continue therefore the values to any number of

weights by following these laws, thus

f i
17 X 7 IIQ

for 7 weights, / =

for 8 weights, / =

HX3 33

20 x 8 __ 160

i3><3"~ ~39~

or, in general, the effect at B for any number of weights may
be had directly from the previous expression.
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202. General Expression for Full Strain at Any
Weight. For the sum of effects at C, it is seen that we have

kL-r-, and it can be shown that the coefficient k is the sum

in 2\
a

of two fractions namely, f and - _ or

For the effect at D we have

For the effect at E we have

or, putting them in sequence, we have

(n-o}'
at A the effect g= f

C " " k =

D " " u=

E , .,

n -
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and so for any number of weights upon one end of the

beam.

An examination of this series shows that in the first of

the two fractions the numerator is equal to the square of the

number of weights preceding the one under consideration
;

for instance, at A, where there are no weights preceding,

we have the numerator o
;
at B there is one weight preced-

ing, and hence the numerator is i
2

equals i
;
at C there are

two weights preceding, hence the numerator equals 2
2

equals

4 ;
at D there are three weights, hence the numerator equals

3
2

equals 9 ;
etc. For the denominator of the first fraction we

have, for the several cases in consecutive order, the values

J
> 3> 5> 7> etc.

;
an arithmetical series of the odd numbers.

In the second fraction we have a numerator equal to the

square ofthe difference between n and the number of weights

preceding the one at which the strain is being measured
;

and a denominator of 2n minus the denominator of the first

fraction.

Let r represent in any case the number of weights pre-

ceding the one at the location of which we wish to know
the strain. Then we shall have, as the coefficient of the effect

at that point,

r* (n-r)
a

and for the full effect, or the destructive energy,

D = L--(^ + <*--. \ (68.)
I \ 2r+ i 2n (2r+i) /

in which L represents one of the equal weights with which

the beam is loaded
;

// the distance from the weight at which

the strain in the beam is being measured to the right-hand
end of the beam

;
t the distance from the same point to the

left-hand end
;

/= h + / the length of the beam between sup-
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ports ;
n the number of equal weights equally disposed upon

the beam, as in Fig. 41 ;
and r the number of weights between

the point where the strain is measured and the left-hand end

of the beam, not including the one at the point where the

strain is measured.

203. Example. What is the strain at the fifth weight

from the left-hand end of a beam 22 feet long, loaded with 1 1

weights of 100 pounds each
;
the weights placed at equal

distances from centres, and the distance from each end of the

beam to the centre of the nearest weight being equal to half

the distance between the centres of any two adjoining

weights? Here the distance between centres of weights

will be 2 feet, t will equal 9 feet, and h will equal 13

feet, L = 100, n n, and r 4.

From these the strain at the fifth weight will be (form.

68.)

D = ioox- +-- = 2950
22 V 8+1 22 (8+ 1)



QUESTIONS FOR PRACTICE.

204-. A beam 12 feet long is loaded at 4 feet from the

left-hand end with 4000 pounds. What is the strain at that

point ?

205. What are the strains, respectively, at 2, 4, and 6

feet from the right-hand end ?

206. A beam 14 feet long is loaded with two weights;

one, A', weighing 3000 pounds, is located at 4 feet from the

left-hand end
;
the other, B'

, weighing 5000 pounds, is at 6

feet from the right-hand end.

What strain is caused by these two weights at the

point A ?

What strain is caused at Bl

207. In the above beam what strain is caused by the

two weights at a point 2 feet from the left-hand end ?

What strain is caused at a point 2 feet from the right-

hand end?

What strain is produced at the middle of the beam ?

208. Abeam 20 feet long is loaded with three weights;

one, A', of 3000 pounds, at 3 feet from the left-hand end;

one, B'
9
of 2000 pounds, at 1 1 feet from the same end

;
and

the third weight, C' , of 4000 pounds, at 4 feet from the

right-hand end.
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What is the full effect of the three weights at the location

of each weight, at 2 feet from the left-hand end, at 2 feet

from the right-hand end, at 6 feet from the same end, and at

the middle of the beam ?

209. Abeam 16 feet long is loaded with 20 weights of

zoo pounds each, the weights being equally distributed.

What strain do these weights produce in the beam at the

ninth weight from one end ?



CHAPTER X.

STRAINS FROM UNIFORMLY DISTRIBUTED LOADS.

ART. 210. Extinction Between a Series ofConcentrated

Weights and a Thoroughly Distributed ILoad. The distribu-

tion of the load upon a beam, as shown in Figs. 39, 40 and 41,

is essentially that of a uniform distribution over the entire

length of the beam. For if the beam be divided into as

many parts as there are weights, by vertical lines located

midway between each two weights, it is seen that the parts

into which these lines divide the beam are all equal one

with another, and the weight upon each part is located 'in a

vertical line passing through the centre of gravity of that

part. Hence this beam, taken with the loads upon it, is an

apparently parallel case with a beam having an equally

distributed load.

An application of formula (68.), however, will show that

the case is that of a beam loaded with a series of concentrated

weights, and not with a thoroughly distributed load, although
it closely approximates the latter. We find that the results

of computations made with this formula differ according to

the number of weights upon the beam, but approach a cer-

tain limit as the number of weights is increased
;
a limit

which is that of a beam with an equally distributed load.

211. Demonstration. For example, let us find by for-

mula (68.) the effects at the middle of the beam under

differing numbers of weights.
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We may modify the formula to suit this case, for

Lxn = U, when U equals the total weight upon the

beam, or L =
,
and h = t = \l.

By substituting these values, we have

2r+

(69.)

To apply this modified formula to the question :

First. Let there be five weights equally disposed, or

n = 5 ;
then r 2, and we have

Second. Let there be nine weights or n 9, then r 4,

and we have

*=~

If = 25, then r 12, and

Fourth. \i n 101, then r = 50, and

+W) =
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Comparing the coefficients of these several results, we

have

when n 5, the coefficient = |~f =J-f TV
" = 9>

" "

" = 25,
"

" = 101,
" " = -AWr = 4 +

The result in all cases is equal to a half, plus a fraction

which decreases as n increases, or which has unity for its

numerator, and a denominator equal to twice the square of n.

The coefficient may be expressed then by \ +

Now, when the number of weights is unlimited, or the

load thoroughly and equally distributed over the whole

length, then n is infinite, and the denominator of the last

fraction becomes infinity. In this case, the fraction itself

equals zero and consequently vanishes.

Hence the coefficient tends towards
,
and with the loads

subdivided to the last degree, and infinite in number, actual-

ly becomes \ ; for, with these conditions fulfilled the case

is actually that of an equally distributed load, and then

x = \U- = i*7/. (See Art. 59.)

This value of the coefficient may be concisely derived

by the use of the calculus, as will now be shown.

212. Demonstration by the Calculus. To obtain a for-

mula to represent the strain caused at any point by an equally

distributed load, let RPTS, Fig. 42, represent graphically

an equally distributed load, SR being equal to TP, and

let it be required to find the ordinate EF, equal to the

effect at any point E, caused by the whole load.
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F D

''

C

C B P

A
I

FIG. 42.

To do this we may proceed as follows : Let the ordinate

AG represent by scale the strain caused at A by a small

weight A', concentrated at A. Then will EJ represent

(Art. 190) the effect of A' at E. Again, let the ordinate

BH represent by scale the strain at B caused by a small

weight B'
,
concentrated at B. Then will EK represent

the effect of B' at E. The sum of these, EJ+EK, will

equal the joint effect of the weights A' and B' at E. Or

(Art. 190)

A'hx B'tx,U ~
'I

'

I

Let the loads A' and B' be very small
; equal to a small

portion of the equally distributed load SRPT, and repre-

sented graphically by the thin vertical slices at A and B

respectively, and let these slices be reduced to the smallest

possible thickness. By the rules of the calculus we may

represent the thickness of the slices, when infinitely reduced,

by dx, the differential of x, or rate of increase. If e be put

to represent the weight per lineal foot of the equally dis-

tributed load SRPT, then edx will represent the weight

of the thin slice at A, or equal A'. So also edx
t

will

represent the weight of the slice at B, or equal B'.
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Substituting these values for A' and B' in the above

expression, we obtain

~ ehxdx etx.dx. e , , , ,D - + '- '- = j (hxdx + txpX

This is the effect at E of the two loads at A and B, but

these loads are infinitesimally small, therefore the expression

is to be considered merely as the sum of the differential, or

rates of increase of the strains produced by the two parts

into which the whole of the equally distributed load RSTP
is divided by the ordinate EF. The strain itself is to be

had by the integral which is to be derived from the above

differential of the strain. Therefore, by integration, we have

(Arts. 4-62 and 463)

^ (
hxdx + tx

t
dx

t )
= 4 (\hx* + \tx?} y

By integrating between x o and x = /, also between

x
t
=. o and x

t /i, or making the integral definite, we
have

but h = I - t

therefore ht = (I t)
t

and h 2 = (l-t)
a

therefore

= (l-t)t+(l-t}
s = ltt*+l*2lt+t* = I

s-It
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and the formula

et
y = j (ht + k s

) becomes

*=Ti (l
'- K

>

y = \et(l-f) (70.)

This result gives the value of the ordinate y, drawn at

any point, and is comparable with the formula for the para-

bola*, in which / equals the base, and the maximum ordi-

nate, y, equals the height. Therefore, if the curve line

RFDP be that of the parabola, it will limit all the ordi-

nates, y, which may be drawn from the line RP.

In the above discussion e was put for the weight of one

foot lineal of the load, therefore the whole load U equals

el, or e = . If in formula (70.) we substitute for e this

value of it, we have

and when h t \l we have, for the ordinate at its

maximum or at the centre,

y =

(72.}

* For here we have an ordinate to the curve from any point in the base,which

is in proportion to the rectangle [t x (/ /)] of the two parts into which the

base is divided by that point, a property of the parabola. (See Cape's Mathe-

matics, 1850, Vol. II., p. 48.)
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We thus see that the true value of the coefficient

discussed in Art. 211 is equal to one half.

This result (67) is the effect at the middle of the beam,

and shows that an equally distributed load will need to be

twice the weight of a concentrated load to produce like

effects upon any given beam ;
a like result with that which

was obtained in another way at Art. 59.

213. Distinction Shown by Scales of Strains. By the

calculus, the coefficient, as has just been shown, is equal to|,

but those by formula (69.) exceed i by a certain fraction

(Art. 211).

A comparison of the scales of strains in 'Figs. 41 and 42

will show that the line limiting the ordinates is not a para-

bola, but a polygonal line. In proportion to the increase in

the number of the weights, and their consequent diminution

in size and distance apart, this polygonal figure approximates
the parabolic curve ;

and in like proportion do the corre-

sponding coefficients approach the coefficient obtained by
the calculus; until finally, when the number of the weights

becomes infinite, or the load is absolutely an equably distrib-

uted one, then the coefficients are identical. The difference

between the two expressions is that which is shown between

the areas of the polygonal and parabolic figures.

214. Effect at Any Point by an Equally Distributed

Load. One other lesson may be learned from this discus-

sion.

It has been shown (Arts. 59 and 61) that the effect at the

middle of the beam, from an equably distributed weight, is,

equal to that which would be produced by just one half of

the weight if concentrated there
;
and now we see (Arts. 2(1

and 212) that this proportion holds good, not only at the

middle of the beam, but also at any point in its length.
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The expression (71.) just obtained,

gives the effect produced by an equally distributed load at

any point in the beam.

It was shown (Art. 56) that the effect at any point of a

load concentrated at that point, is equal to

W - w ht

I ~l

Now when the effects in the two cases are equal, we have

or, 4*7= W ,i

showing that when the effects at any point are equal, the

concentrated load is equal to just half of the uniformly

distributed load.

215. Shape of Side of Beam for an Equably Distributed

Load. We have seen (form. 71.) that the effect at any point

in a beam from an equably distributed load is

and that the curve drawn through the ends of a series of

ordinates obtained by this formula is a parabola (Art. 212,

foot note).

From this may easily be derived the form of the depth of

a beam (the breadth being constant), which shall be equally

strong throughout its length to bear safely an equably dis-
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tributed load. The formula (71.) gives the strain at any

point, and when put equal to the resistance (Art. 35) is

- Sbd*

r>

Substituting for 5 its value we have for the safe

weight (Art. 73)

f , . ,
2UaAt

from which a* ^^

This gives the square of the depth at any point, and when

h t = l we have

equals the square of the depth at the middle.

Now make CD, Fig. 43, equal by formula (73.} to d*

equals -r, and through D draw the parabolic curve

RDFP, Across the figure draw a series of ordinates, as

CD and EF. Then any one of these ordinates is equal to

d* or the square of the required depth of the beam at the

location of that ordinate. To find d, the depth, at each of

these points, we have but to make CG equal to the square

root of CD, and EH equal to the square root of EF, and

in like manner find corresponding points to G and H on

each ordinate, and draw the curve line RGHP through

these points ;
then this curve line will define the top edge of

a beam (RP being the bottom edge), which shall be equally

strong at all points to bear safely the equably distributed

load.
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I
T

P f

FIG. 43.

216. The Form of Side of Beam a Semi-el lipe. The

form of the top edge of the beam as obtained in the last

article is elliptical, as may be shown thus :

The equation to the ellipse, the co-ordinates taken as in

Fig. 43, is*
12

U2 = -
(2(IX X2

)

in which x (= RE, Fig, 43) is the abscissa, u (= EH) is its

ordinate, a(=RC=%f) is the semi-transverse diameter,

and b ( CG \
/

~CJ})
is the semi-conjugate diameter:

therefore If = CG* = CD and,' by formula (72.\ in which

CD, the height of the parabola at the middle in Figs. 42 and

43, is represented by y, at its maximum we have y = \Ul.

In the above value of u* substituting for a, and b, their

values as here shown, we have

and since Ix x' = x (I x) = th of Fig. 42, therefore

By referring to formula (71.) it will be seen that this value of

u a
is identical with that given for y, the ordinate to the

*
Cape's Mathematics, Vol. II., p. 21, putting ;/ for;-.
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parabola, consequently y u*, and therefore the curve

RGHP is elliptical.

To obtain the shape of the beam, instead of drawing a

series of ordinates in a parabola, and taking the square root

of each ordinate, we may at once draw the semi-ellipse

RGHP.
Formula (73.) gives the value of d* at middle, therefore

for d at middle make CG, Fig. 44, equal to

-\/'~
Ual" V ~ (U)

and through RGP draw a semi-ellipse, then RGPCR will

be the shape of the beam.

7?

FIG. 44.

As an example : With a beam of white pine 10 feet long,

5 inches broad, and loaded with 10,000 pounds equably dis-

tributed, and with a factor of safety a = 4, what should be

the height at the middle?

Formula (74-) becomes

10000 x 4 x 10

2 X 500 X 5

= 8-94

or the height of the beam is to be 9 inches, and the form of

the side is to be that of a semi-ellipse, with 10 feet for its

transverse diameter, and 9 inches for its semi-conjugate
diameter.
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QUESTIONS FOR PRACTICE.

2(7. In a scale of strains for an equally distributed load,

what curve forms the upper edge ?

218. In a beam, 10 feet long, having 1000 pounds

equably distributed over its length, what are the strains at

2, 3, and 4 feet respectively, from one end ?

219. What should be the depth at the middle of this

beam, if it be of white pine, if the breadth be made equal to

fff of the depth, and if 4 be the value of the factor of safety ?

220. In order that the beam be of equal strength

throughout its length, of what form should the upper edge

be when the lower edge is straight, and the beam of parallel

breadth throughout ?



CHAPTER XL

STRAINS IN LEVERS, GRAPHICALLY EXPRESSED.

ART. 22 1 Scale of Strains for Promiscuously Loaded

I^ever. In Fig. 45 we have a semi-beam loaded promiscu-

ously with the concentrated weights A, B, C and D.

FIG. 45.

To construct a scale of strains for this case, make EF, by

any convenient scale, equal to the product of the weight A
into the distance EK\ make FG equal to BxEU\ make

GH equal to CxEV', and HJ equal to DxET. From
each weight erect a perpendicular, join K and F

y
L and G,

M and //, and N and J\ then any vertical ordinate, as

QP or ^5, drawn from the line EK to the line JNMLK,
will, when measured by the same scale as that with which

the points F, G, H and J were obtained, give, at the loca-

tion of the ordinate, the effect produced by the four weights.
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In the construction of this figure, each triangle of strains

is made upon the principle shown in Art. 168, and the several

triangles are successively added. An ordinate crossing all

these triangles must necessarily be equal to the sum of the

strains at its location caused by all the weights.

The strain at any ordinate may also be found arithmeti-

cally, by taking the sum of the products of each weight into

its horizontal distance to the ordinate, measured from the

weight towards the wall
;
those weights which occur between

the ordinate and the wall not being considered, as they add

nothing to the strain at the ordinate.

222. Strains and Sizes of Lever Uniformly Loaded.

When the weights are equably distributed over a semi-beam,

the equation to the curve CFA, Fig. 46, limiting the ordi-

II

FIG. 46.

nates of strains, may be found by the use of the calculus, as

in Art. 212
;

for if ABHJ be taken to represent the equa-

bly distributed load, then in considering the effect at the

wall of a very thin slice of this load, as EG (reducing it

infinitely) we obtain the differential of the strain.

Let AE=y, then dy, its differential, may be taken as

the thickness of the thin slice of the load at EG, when

reduced to its smallest possible limits. Putting e for the

weight of a lineal foot of the load, then edy will equal the

weight of the thin slice. The effect or moment of this slice
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at the wall, equals its weight into its distance from the wall,

therefore we have for the differential of the moment

edy x (ny) = du or,

endyeydy = du

The integral of this expression is (Arts. 462 and 4-63)

/ (endyeydy) = eny^ey* = u

Applying this, or integrating between y equals zero and

^ equals n, we have

ert%evt = \en* BC = u

or for the strain at the wall, BC,

u = \en* (75.)

and for the strain at any point, E,

x = \ey> (76.)

From this latter, by transposing, we have

which is the equation to the parabola
* a proof that the

curve CFA is that of a semi-parabola, in which A is the

apex, and CD the base.

These considerations pertain to the scale for strains. A
scale for depths may be had by proceeding as follows :

The value of e in formulas (75.) and (76.) is, from U= en

(in which U equals the whole load upon the semi-beam)

*
For, putting

- = /, then y 2 = -x becomes y 2 =
2/je, the equation to

the parabola. See Cape's Mathematics, Vol. II., p. 47.
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e = . Substituting this value for e in formula (75.) we
n

have

u = %--n
2

n

Putting this equal to the resistance (Art. 35) gives us

= Sbd*

and substituting for 5 its equivalent \B, and inserting the

symbol for safety (Art. 73), we have

4*4 / =5 Bbd* or,

2Uan = Bbd 2

[which agrees with formula (#0.)] for the size of the semi-

beam at the wall.

Again, subjecting formula (76.) to like changes, we have

for the size of the semi-beam at any point

2U-y* = Bbd 2

(77.)

in which y is the distance of that point from the free end of

the semi-beam.

223. The Form of Side of L,ever a Triangle. If a semi-

beam, subjected to an equally distributed load, be of rect-

angular section throughout, and of constant breadth, then, in

order that it may be equally strong at all points of its length,

the form of its side must be a triangle.

This may be shown as follows :

Formula (77.) gives by transposition

in which the coefficient -^r~ ,
for the case above cited, is
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composed of constant factors
;
hence d* will vary as y*, and

therefore d will be in proportion to y. From this, formula

(78.) is shown to be the equation to a straight line, and in

such form that when y equals zero, d also becomes zero.

From this, the side elevation of the semi-beam must be a tri-

angle, with the depth at the wall (for then y becomes equal

to n
) equal [from formula (78.) or (00.)] to

d
2Uan

(79.)

As an example, let it be required to define the depth of a

semi-beam of white pine, 10 feet long and 5 inches broad,

carrying 5000 pounds equably distributed along its length,

and with a factor of safety, a, equal to 4.

Formula (79.) becomes

d = 4/2 X 5000X4 X 10 y
500 x 5

This is the depth at

the wall, as at AC, Fig.

47, in which AB is the

length of the semi-beam.

By joining B and C we

have ABC for the shape

of the side of the required

semi-beam.
FIG. 47.

224-. Combination of Conditions The forms of strain

scales for loads under various simple conditions having been

denned, we may now consider those arising from combina-

tions of conditions.

225. Strains and I>imenioiis for Compound Load.

Take the case of a semi-beam or lever, carrying an equably
distributed load, and also a concentrated load at the free end.
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Let the line AB, Fig. 48, represent the length of the

FIG. 48.

lever, R a weight suspended from its free end, and DC the

face of the wall into which the lever is secured. In formula

(75.) we have the strain at the wall, in which e equals the

weight per lineal foot of the load, or e . Substituting

this value in the formula, we have 21 = \Un as the strain at

the wall; therefore make AD = %l7n, and by the same scale

make AC RxAB = Rn. Join B and C, and describe a

semi-parabola from B to D Avith the apex at B, and the

base extended from D parallel with AB
;
then any vertical

ordinate drawn from the curve DB to the straight line CB
will measure the strain at the point of intersection with the

line AB.

The scale here given is that for strains ; the scale for

depths will now be shown.

We have seen in Art. 223 that the form of the side of a

lever required by a uniformly distributed load is that of a

triangle, the vertical base of which is determined by formula

(7#.) ;
and it is shown at Art. 178, that the form, for a load

concentrated at the end of a lever, is a semi-parabola, with

its apex at the free end of the lever, and its base vertical at

the fixed end and equal to
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Therefore let AB, Fig. 49, be the length of the lever

FIG. 49.

secured at A in the wall DC, and having suspended from

its free end, B, the weight P, and also carrying an equa-

bly distributed load ABEF. Make, by formula (79.),

AD =

and join B and D
;
then ABD is the scale for the depths

required by the equally distributed load U. Make, as

above,

AC=V
B̂b

and upon AC as a base and AB for the height describe

the semi-parabola ABC, which gives the scale for depths

due to the concentrated load P.

Now, an ordinate drawn at any point, as G, vertically

across the combined scales of depths, as H to J, measures,

by scale, the required depth for the lever at the point G.

The length of any ordinate, as HJ, may be determined

analytically thus. The portion of the ordinate representing

the equably distributed load is, by formula (77.),

2Ua
~Bbn
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For the remaining part of the ordinate we have formula

(36.) (in which x is equivalent to the y of this case),

Adding these we have for the full length of the ordinate

HJ, or for the depth at the point G,

d 2Ua
Bbn Bb y (80.)

in which U is the weight equably distributed over the

length of the lever
; P, the weight concentrated at the end

of the lever
; #, the length of the lever

; j/, the horizontal

distance from the free end of the lever to the location of the

ordinate at which the strain is being measured
; a, the factor

of safety ; b, the breadth of the lever, and B the resistance

to rupture as per Table XX.

226. Scale of Strains for Compound Loads. Fig. 5

represents the case of a semi-beam like the preceding, except

that the concentrated load is located at some other point

than the extreme end.

FIG. 50.

The curve DB is found as in Fig. 48, and the line CE
in the same manner as there, except that, in finding AC, the

distance m from the wall to the weight R is to be substi-

tuted for n, the length of the lever.
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227 Scale of Strains for Proniicuoiis Load. A semi-

beam, equably loaded, may also have to carry two or more

concentrated loads. In this case, for the scale of strains we

combine the methods required for the two kinds of loads,

as in Fig. 51. Here AB represents the length of the semi-

beam
;
the curve DB, for the equably distributed load, is

obtained as in Art. 222
;
and the triangles for the concen-

trated weights are found as in Art. 221.

A vertical ordinate drawn anywhere across the figure,

and terminated by the curve DB and the line KJHEB,
will measure the strain at the location of that ordinate. The

depth of the beam at that point may be found by putting the

strain as above found equal to the resistance
; or.

or (Art. 35),

from which,

D = Sbd*

D = \Bbd'<

Bb

in which D represents the destructive energy or the strain

as shown by the length of the vertical ordinate obtained as

above directed
; a, the symbol for safety (Art. 73) ;

E
equals the resistance to rupture as per Table XX., and b

and d are the breadth and depth, respectively the breadth

being constant.
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QUESTIONS FOR PRACTICE.

228. In a semi-beam 6 feet long, carrying 500 pounds
at 2 feet from the wall, and 300 pounds at 5 feet from the

wall, what are the respective strains at i, 2, 3, 4 and 5

feet from the free end ?

What is the strain at the wall ?

229. In a scale of strains for a semi-beam equably

loaded, what curve limits the upper edge ?

230. A semi-beam, 8 feet long, is equably loaded with

100 pounds per foot lineal.

What is the strain produced at 5 feet from the free end ?

231. Of Avhat form is
;

the side of the last-named semi-

beam required to be, in order that the beam may be of equal

strength at all points, the breadth being constant ?

232. In a semi-beam 7 feet long, carrying 1000 pounds
at its free end, and 100 pounds per foot lineal, equably dis-

tributed, what are the respective strains at 3, 5 and 7 feet

from the free end ?

233. In a semi-beam 10 feet long, carrying an equably

distributed load of 1000 pounds, and concentrated loads of

800, 500 and 700 pounds, at the several distances of 3, 6

and 8 feet from the free end, what are the respective strains

at 2, 4, 7 and 9 feet from the free end ?



CHAPTER XII.

COMPOUND STRAINS IN BEAMS, GRAPHICALLY EXPRESSED.

ART. 234. Equably Distributed and Concentrated Loads

on a Beam. We have now to consider the effect ot com-

pound weights upon whole beams.

Of this class we shall take first the case of an equably

distributed weight, together with a concentrated one, as in

Fig. 52.

In this figure the curve of strains RFDP for the equably

distributed load is a parabola, with its apex at D. The

FIG. 52.

height CD is, by formula (70.), to be made equal to -//;

and HJ, by the same scale, and by Art. 192, is to be made

equal to A'
-j-

. Join J with R and with P. Then any

vertical ordinate FG drawn across the figure, and termi-
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nated by the curve RFDP at top, and by the line RJP at

bottom, will measure the strain, j, at E, the point of inter-

section of the ordinate with the line RP.

To obtain this strain analytically, we have, for the ordi-

nate EF, formula (71.), which is (putting u for y )

ujhtu =
\U-j-

and, for the ordinate EG, formula (44*)> which is (putting b'

for/, A' for W and // for x)

Now, since b'+u EG+EF = y, therefore

^ *,,
y = u+b' =

\U-j + A'-h

y = j(Ut + A'm) (81.)

equals the strain at any point between H and P.

To find the requisite depth of the beam at any point, the

breadth being constant, we put the strain equal to the

resistance, or (Art. 35)

y = Sbd2 = Bbd*

or, for the safe weight,

^ay = Bbd* from which

Bbl

235. Greatest Strain Graphically Represented. To find

the longest ordinate, and consequently the greatest strain,

arising from the compound loads of Fig. 52, draw the tangent

KL parallel with JP\ then an ordinate FG drawn from
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the point of contact, F, will be greater than any other

which may be drawn across the figure.

236. Location of Greatest Strain Analytically Defined.

The point of contact between a curve and its tangent is not

easily found by mere inspection, but analytically its exact

position may be defined.

FIG. 52.

To do this, let (Fig. 52) a' = HJ, V = EG, u = EF,

h = EP and h + / = / = RP.

We now have, from the similar triangles HJP and EGP,

n : a' : : h : V =

From formula (70.), in which y = u = \et(lf), we have

u = %eh(l/i) = \ehl- \eh* therefore

n

(83.)

This is the value of an ordiriate drawn at any point be-

tween H and P. But it is required to find where this
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ordinate will be at its maximum. This may be done by
the calculus. Obtain the differential of formula (83.\ and

placing it equal to zero, derive its integral ;
from which the

value of h will be obtained. This represents the distance

from P to the ordinate y, when at its maximum, and there-

fore determines the point E, the location of the ordinate, as

required.

237. Location of Greatest Strain Differentially Defined.

First. For the value of h we are to find the differential of

formula (83.) and put it equal to zero
;
thus :

dy = ( + \el\dh %e x 2hdh = o
V;z /

= ehdh

Now, since el= U, therefore e = -,-, and

Again, <i=ff?=A' therefore

~
(84.)
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or the distance of the ordinate from the remote end of the

beam is equal to half the length of the beam, plus a fraction

which has for its numerator the product of the concentrated

weight into its distance from the nearest bearing, and for its

denominator the weight which is equably distributed along

the beam.

This formula of the value of h is limited in its applica-

tion to those cases in which n exceeds h in value. When,

on the contrary, k exceeds n
,
then the longest ordinate is

at the location of the concentrated weight, and n is to be

substituted for h. The reason for this may be seen by an

inspection of the figure.

238. Greatet Strain Analytically Defined. Second. To
find the length of the ordinate y, we have, by formula (83.),

n

and by substituting for / its value, h + t,

y
- a'h

XT / Aimn j" U r
Now, a = A

-j- , and e -r, therefore

' h

y n
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which gives the greatest strain resulting from both the

concentrated and distributed loads.

This formula is identical with formula (81.), obtained by
another process.

239. Example. As an example, let it be required to

find the location and length of the longest ordinate of strains

produced by a load of 4000 pounds, concentrated at three

feet from one end of a beam 16 feet long, together with a

load of 3000 pounds, equably distributed over its length.

First. The location of the ordinate, or the value of h.

This, from formula (84-), is

or the longest ordinate is situated within one foot of the

location of the concentrated weight.

Second. The amount of strain at this ordinate. This, by

the above formula, is

12
3+ix 3000x4) = 13500

or the greatest resulting strain at any one point of the

combined weights equals 13,500 pounds.

240. IMmeiiiions of Beam for Distributed and Concen-

trated Loads. The amount of strain, just found is the actual

moment of the loads. Putting this equal to the resistance

(Art. 35), we have, for the safe weight,

a^(A'm+#) = Sbd 2 = \Bbd
2 or

/

4* 7(A 'm + Ut) = Bbd* (85.)
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which is a rule for obtaining the dimensions requisite for re-

sisting effectually the greatest strain arising from the com-

bined action of a concentrated and an equably distributed load
;

and in which A' equals the concentrated load, and U the

equably distributed load, both in pounds ;
/ is the length of

the beam between bearings ;
m the distance from the con-

centrated weight to the nearer end of the beam
;

h the dis-

tance from the location of the greatest strain to the more

distant end of the beam
;
and / equals / //. /, m, h and

/ are all to be taken in feet, and the value of h is to be had

from formula (84-} ;
care being exercised that when h ex-

ceeds n in value, then n is to be used in place of h, and

m in place of /. In the latter case formula (85.) becomes

4a ^(A'm +tUm) = Bbd2

= Bbd*

24-1. Comparison of Formulas, Here and in. Art. ISO.

Formula (29.\ given in Art. 150, for a carriage beam with one

header, is for a case similar to that of the last article, but is not

strictly accurate. Instead of the two strains being taken at

the same point, E (the location of the longest ordinate), as

in Fig. 52, they are taken, the one for the concentrated load,

at the location of this load, and the other, that for the

equably distributed load, at the middle of the beam
; or, the

maximum strain for each load.

Taken in this manner the result is in excess of the truth,

as //7+ CD is greater than FG. The error is upon the

safe side, the strains being estimated greater than they really

are. In most cases this error would not be large, and the only

objection to it would be that it requires a little more mate-

rial in the beam. Formula (29.) may therefore be employed
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in ordinary cases where a low priced material, such as wood
for example, is used for the beams

;
but where a more costly

material is involved, economy would dictate that the strain

be not over-estimated, and that it be correctly obtained by
the use of formula (85.) in Art. 24-0. (See also caution in

Art. 88.)

242. Location of Oreatet Strain Differentially De-

fined. In Fig. 53 we have a scale of strains, RABPF, by
which is found the effect arising at any point in the length of

the beam from two concentrated loads, together with an

equably distributed load.

The curve RFP is a parabola (foot note, Art. 2(2)

found as in Fig. 52, and the moment of the two concen-

trated loads equals AH at H and BJ at J, and is

found as in Art. 194- and Fig. 37. FG is the ordinate for

strains occurring between H and J1
and is defined thus :

.L

Let HJ = d' EJ x, EG = v = b'+fr EF = ,

AH=a f

, BJ=V and a'b f = c. Then, from similar

triangles,



GREATEST STRAIN LOCATION BY CALCULUS. 185

and, since x = h s, v = b'+p and c a' b' t there

fore

d'

a
f-V

and v b -\ 77 <

Formula (70.),

gives [putting /// for t(lt) and u for y\

u = %eht

and since y u + v, consequently

y =. ^eht + b' -\ -j, (h s) (87.)

This is the value of the ordinate for the strain at any

point between H and J.

To obtain the longest ordinate which can be drawn here,

proceed as in Arts. 235 to 237, and as follows:

First reduce formula (87.) thus,

a'-b' . a'-b' a'-V

then v + u = y = \ehl^eh
s + b' -i -r, h--- s

In this expression, rejecting the quantities unaffected by the

variable h, we have, for the differential of y,
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dy =
(^el

+^^dh - ehdh = o

or,
(\el

+ - }dk=. ehdh

or, its integral gives

* = #+= (**.)

243. Greatest Strain and Dimensions The above gives

the value of h. To obtain the value of y at its maximum
take formula (87.). In this, for the value of a' we have AH,

equal to the joint effect at H of the two concentrated loads
;

or, putting a' for the D of formula

m

and for the value of b' (form. 52.)

b' =
j(B'r

+ A'm)

The value of e (from el U) is equal to 7- . By sub-

stituting this value for e we have

=U +y+k-s (89.)

This equals the strain from the compound weights of Fig. S3,

and is the same as (87.), for j
== \e.

Either formula will give the strain at any required point

between H and J (Fig. 53) by putting h equal to the dis-
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FIG. 53.

tance between that point and P
;

but when the greatest

strain is required, h must be obtained from its value in

formula (88.). To obtain the dimensions in this case, we put
the strain equal to the resistance, and have, with a as the

factor for safe weight (Arts. 35 and 73)

~ = Sbd* =

= Bbd*

and from this formula may be found the dimensions required

for resisting effectually the greatest strain in the beam, the

value of h being derived from formula (88.).

24-4. Aignlng the Symbol*. It is important to observe

here that of the two moments a' and ', a' designates the

larger of the two, while m and n represent the distances

from a' to the two ends of the beam, m being the distance

to that support which may be reached without passing the
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other weight. Again r and s are to be regarded as the

distances from b' to the two ends of the beam
;

k and s

dating from the same end of the beam as n
;
and as n is the

greatest possible value of //, it is to be substituted for it

when by the formula for h its value is found equal to or

greater than n.

In order to ascertain which of the two moments a and

b' is the greater, a trial must be had by the use of the expres-

sions in the last article designating their respective values.

When the two concentrated weights are equal, then the

nearer weight to the middle of the beam will produce the

greater moment, and may at once be designated as a.

245. Example Strain and Size at a Given Point. As

an example, let a beam, 10 feet long, be required to carry an

equably distributed load of 100 pounds per foot lineal, a con-

centrated load of 2000 pounds at a point two feet from the

left-hand end, and a second concentrated load of 800 pounds
located at 3 feet from the right-hand end. What will be the

resulting strain at 4 feet from the right-hand end ?

Formula (87.) is

equals the required strain.

In designating m and s we find (Art. 243) for the

larger weight

(2000 x 8 + 800 x 3)
= 3680

and for the smaller

(8OO X 7 + 2000 X 2)
= 288O

and hence (Art. 153) m = 2 and s = 3.



DIMENSIONS AT A GIVEN POINT. 189

We now have e = 100, h = 4, /= 10, t = lh = 6,

2, n = S, J=3, r = 7 and ^'=5.

becomes x 100 X4 x 6 =1200

With ^' = 2000 and B' = 800, a' = (A'n+B's) =

(as above) 3680, and b
f = j (B

r

r+A'm) = (as above) 2880

and #'
' = 36802880 = 800.

We therefore have, as a resulting
1 value of y in formula

1200 + 2880 + -(43) = 4240 y

This equals the effect at 4 feet from the right-hand end pro-

duced by the three weights.

To find the dimensions of the beam at this point, make

the strain just found equal to the resistance [see Art. 24-3 at

formula (90.)], and we have

4a x 4240 = Bbd*

and, if a = 4 and B = 500 (see Table XX.), we have

500

Let =3, then we have d = 6-j$\ or, the beam at

4 feet from the right-hand end should be 3 x 6- 73 inches in

cross-section.

246. Example Greatest Strain. Again, let it be re-

quired to show the greatest strain produced at any one point

by the three weights of the last article.

The first dimension required here is that of h. For

this we have, as per formula (88.\
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from which h= $ -^
--- - =6-6

This result being less than n, since n equals 8, is there-

fore the correct value of h, and from it we obtain (from

/) / 3.4. Formula (89.} now gives

'=

which is the required greatest strain.

247. Example Dimensions. What sized beam of equal

cross-section throughout would be required to carry safely

the loads upon the beam of the last article, when B = 500

and a = 4?
The greatest strain at any point was found to be 4578

pounds, therefore

4a x 4578 = Bbd 9

4.X4X4578
500

and with b taken equal to 3, then d=6>gQ. The beam

must be 3x7 inches.

248. Dimensions for Greatest Strain when // Equals n.

When, in formula (90.), h = n, or is greater than n
t

then

t = m, hs = d f

,
and

c*f = b'+a'-b' = a'

also,
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and the formula becomes

or, supplying the value of a' (Art. 243),

which is a rule for a beam carrying two concentrated loads

and a uniformly distributed load, when h = n as above

stated.

249. Dimensions for Greatest Strain when h is Greater

than n. As an example under this rule, what are the

breadth and depth of a Georgia pine beam 20 feet long,

carrying 2000 pounds uniformly distributed over its whole

length, 10,000 pounds at 7 feet from the left-hand end, and

8000 pounds at 5 feet from the right-hand end
;
the factor

of safety being 4 ?

Here a = 4, [7= 2000, /=2O, ^=850, m = 7 and

s = 5 (since 7 x 10,000 = 70,000 exceeds 5 x 8000 = 40,000 ),

#=13, r=i5 and d' = 8. The value of // is to be

tested, to know whether it is equal to or greater than n.

By formula (88.), and Art. 243,

a'b' a'-b r

dr

a' =
-j-(A'n+B's) (10000x13 + 8000x5) = 59500

V = j(B'r+A'iri) (Sooox 1 5 + 10000x7) = 47500
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a' b' = 59500 47500= 12000

12000

20

This gives a value to h greater than that of n and shows

(Art. 24-4) that n must be substituted for //, and that

the problem is a proper one for solving by formula (91.)\

therefore

r 7X13 7 __ _ ~]

4x4 looo- -- + -(10000x13+8000x5)
' - ~~ =" = 1205. 65

If the breadth b be taken at 8 inches, then ^=
that is, the beam should be 8 x i2| inches.

250. Rule for Carriage Beams with Two Headers and

Two Sets of Tail Beams. By proper modifications, formula

(90.) may be adapted to the requirements of a carriage beam

with two headers, as in Fig. 25. These modifications are as

follows : By Art. 150 we have

hence U~, = \cfht

also, from Arts. 153 and 243,

a =

and, from Art. (55,

A' = \fgm and B' = \fgs

therefore



CARRIAGE BEAM WITH TWO HEADERS. 193

m

Similarly we find

b'

To obtain the maximum strain, h is to be determined

by formula (88.\ in which for e we have

U cfl

<-----[----Ti=

and therefore

a'-V

In these deductions, f equals the weight per superficial

foot of the floor, c the distance apart from centres at

which the beams in the floor are placed, and g the length

of the header. (For cautions in distinguishing between m
and s, and between a' and b'

t
see Art. 244.) By

formula (90.) and the modifications proposed, we therefore

have

Bbd*

and as auxiliary thereto we have, as above,

a'=~

and

a'-b'
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and thus we have in formula (92.) a rule for a carriage beam

carrying two headers and two sets of tail beams. (See cau-

tion in Art. 88).

251. Example. To show the application of this rule,

let it be required to find the breadth of a white pine carriage

beam, 20 feet long and 10 inches deep; the beam to carry

two headers 10 feet long, one located 9 feet from the left-

hand end, and the other 6 feet from the right-hand end. The

floor beams are to be placed 15 inches from centres, and the

floor is to carry 100 pounds per superficial foot, with the fac-

tor of safety a 4.

Here the header at the left-hand end is the nearer of the

two to the middle of the carriage beam, and therefore (Art.

244) m 9.

From formula (92.) we have, for the value of b,

in which a = 4, B 500, d* io
2

, /= 100, c = ij, g 10,

I 20, m = q, n \\, r = 14, s = 6 and d' = 5.

From the auxiliary formulas- of Art. 250,

a' = 100 x IQX -
(9 x ii + 62

)
= 15187-5

4 x 20

b' = ico x io x
^ 2

-
(14 x 6 + 9

2

)
== 12375

a'b 1 = 15187-5 12375 = 2812-5

2812-5 _
/'-=IO + ""
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Here
,

since it is but n, is less in value than h, and

must be used in its place ;
we therefore have recourse to

formula (91-), Art. 248. By this formula the value of b is

This is a general rule. To make it conform to the re-

quirements for a carriage beam, we have for U the equally

distributed load \cfl (Art.\BO).

A' = \fgrn (Art. 250), and B' = Ifgs. Hence

= I^r + g
SooxiooL 20 ^ J

J

or, the carriage beam should be 5^ or, say 6 inches broad.

In this computation, no allowance is made for the weaken-

ing effect of mortising, it being understood that no mortises

are to be made
;

the headers being hung in bridle irons

(Art. 147). (See Art. 88).

252. Carriage Beam with Three Header*. It some-

times occurs in the plan of a floor that two openings, the one

a stairway at the wall, the other an opening for light at or

near the middle of the floor, are opposite each other, as

in Fig. 54.

In this arrangement the carnage beam has three headers

to carry, besides its load as an ordinary floor beam.



196 COMPOUND STRAINS, GRAPHICALLY EXPRESSED. CHAP. XII.

FIG. 54.

Cases of this kind may be divided into two classes : one

that in which the header causing- the greatest strain occurs

between the other two ; the other, that in which it occurs next

to one of the walls. We will first consider the latter case.

253. Three Headers Strains of the Firt Class. When

the well hole for light occurs at the middle of the distance

between the walls, its two headers will be equally near the

centre of the length of the carriage beam ; and, were their

loads alike, the headers would produce equal strains upon the

carriage beam ;
but the loads are not alike, for the tail beams

carried by one header, those which reach to the wall, are

longer than those carried by the other.

Hence the header carrying the tail beams, one end of

which rest on the wall, has the heavier load
; and, as it has

the same leverage as the header on the other side of the

well hole, it will therefore have the greater moment, and

will produce the greater strain upon the carriage beam.
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The stair header will add to the strains upon the carriage

beam at the points of location of the other two headers, and

this addition will be greater at the middle header than at the

farther one, but still not so much greater as to cause the

total strains at the one to preponderate over those at the

other.

254. CJrapIiical Representation. Let Fig. 55, construct-

ed similarly with Fig. 53, represent the strains in a carriage

beam supporting three headers, one of the outside ones, as at

A, producing the greatest strain. In this figure the curve

DKE is a parabola (Art. 212) and is the curve of strains

for the uniformly distributed load upon the carriage beam,

FIG. 55.

of which KL represents the strain at the middle of the

beam
;
and CF, BG and AH, vertical lines, by the

s'ame scale, represent the strains caused by the three head-

ers at the points C, B and A, respectively. Any or-

dinate drawn, parallel to AH, across this figure, and ter-

minated by the boundary line DFGHEKD, will measure

the strain in the carriage beam at its location. Hence

that point at which an ordinate thus drawn proves to

be longest of any which may be drawn, is the point where

the strain upon the carriage beam is the greatest, and the

length of this ordinate measures the amount of this strain.
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Draw the tangent ST parallel to GH. If its point of

contact with the curve occurs between Q and
,

then

HQ will be the longest possible ordinate
; but, if it occur

between K and Q, then HQ will not be the longest.

When AH and BG are equal, the point of contact will

be at K. In the case under consideration (the well hole in

the middle of the floor) the tangent will usually touch be-

tween Q and
, giving HQ as the longest ordinate.

255. Greateit Strain. With the loads A, B and C
in position as in Fig. 55, the longest ordinate may be found

FIG. 55.

by formula (87.), where

/ ri

y = \eht + b' -i -77 (hs)

and in which m + n = r+s=/i + t = t (for the position of

these letters see Art. 244), \eht represents the strain from

distributed load, and
a
'~^-(h s)// v */the uniformly

stands for the length of an ordinate drawn from GH to

BA at the distance h from D towards A, and repre-

sents at the location of the ordinate the strain from the three

concentrated loads. In all cases, except where b' is very

nearly or quite equal to a', h will exceed
, and, in
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general, for all problems of the class of which we are treat-

ing, it may be assumed, without material error, that h will

always exceed n. Then m and n take the place of t

and h in formula (87.), and it becomes (Art. 248)

y = \ernn + a'

mn
or,

The value of a' is (form. 58.)

a' = ~

hence y = %u^ + j(A 'n + B's + Cv) (95.)

In this formula y equals the greatest strain in the beam.

256. General Rule for Equably E>itributecl and Three

Concentrated Loads. Putting the strain y of last article

equal to the resistance (Art. 35) gives us

%U
ni~ + (A 'n + B's + Cv) = Sbd*

and with B ^S and a as the coefficient of safety,

'n + B's + C'v) = Bbd 2
(96.)

which is a general rule for beams carrying a uniformly dis-

tributed load and three concentrated loads similarly placed

with those in Fig. 55. In this rule, U is the uniformly dis-

tributed load, and A f

,
B' and C the three loads concen-

trated at A, B and C in the figure.

257. Example. As an example, we will ascertain the

required breadth of a Georgia pine beam of average quality,
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20 feet long and 14 inches deep, with a load of 2000 pounds

equally distributed over its length, a concentrated load of

4000 pounds at 3 feet from the left-hand end, a like load at

7 feet from the same end, and one of 7000 pounds at 7 feet

from the right-hand end. Take as the factor of safety a = 4.

Then /= 20, ;;/ = 7, ;/ = 13, s = 7, r 13, v 3, u = 17,

d 14, U 2000, A' 7000, ^ = 4000 = C' and B 850,

and from formula (96.)

/---- -- - ---
\

b =
85oxTo(*

X200 X J 3 + 7oooxi 3 + 4000x7
+4000x3^=4.84

or the breadth should be 4^ inches.

258. Rule for Carriage Beam with Three Heatler and
Two Sets of Tail Beams. To modify formula (96.) so as to

make it applicable to a carriage beam, we have for 7, the

uniformly distributed load, (Art. 150) U=%cfl; for the

load at A, caused by the header carrying the tail beams,

one end of which rests upon the wall, A '

\fgm ;
for the

load at B, B' \fg(sv) ;
and for the load at C the

same, C' = :kfg(sv). Formula (96.) now becomes

b =

b = TM ^cnl+gmn +g^~

b = -^ [cnl+g (mn + s*-v*)] (97.)

which is a rule for carriage beams carrying three headers and

two sets of tail beams, located, as in Fig. 55, with A, the

heaviest strained header in an outside position relative to

the other two headers.

259. Example. Under the above rule, what should be

the breadth of a spruce carriage beam 20 feet long and 12
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inches deep, carrying three headers 15 feet long, located as

in Fig. 54. The well-hole for light, in the middle of the width

of the floor, is 6 feet wide, and the stairway opening, at one

of the walls, 3 feet wide. The beams of the floor are placed

15 inches from centres, and are to carry 90 pounds per

superficial foot, with 4 as the factor of safety.

16
Here / 20, m = s = -

7, n 13, v^g\^,
d\2, <:=ii, /=90, a 4 and ^=

By formula (97.)

b =

or the breadth should be 3f inches.

-3
2

)]
= 3-64

260. Three Headers Strains of the Second Class.

We will now consider the other class named in Art. 252,

that in which the header causing the greatest strain occurs

between the other two.

The conditions of this class of cases are represented in

Fig. 56, in which AH=a', BG = b' and CF=c f

, repre-

senting by scale the combined concentrated strains at A, B

and C respectively, and KL is the strain at the middle

due to the uniformly distributed load. The parabolic curve
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(Art. 212) EKD and the line DGHFE form the boun-

daries of the scale of strains, as in Art. 254.

For the proper assignment of the symbols ///, n, r, s, etc.

see Art. 244, taking the two larger of the strains of Fig. 56

for the two given in that article.

The longest vertical ordinate across the scale of strains

will ordinarily be at QH] the exceptions being when the

strain at B is nearly or quite equal to that at A. In the

latter case, however, the diminution at QH will be so small

that that ordinate may be assumed, without material error,

to be the greatest. Taking it as the greatest, formula (87.)

becomes, as in Art. 255,

261. Greatest Strain. The manner of obtaining the value

of a', the strain produced by the three concentrated loads,

will now be shown.

The strain at A, produced by the load A', is (Art.

.mn
56) A'-j-.

The strain at *?B, produced by B'
',

is

of the strain at B may be had by theThe effect at A

proportions shown in the triangles BGE and ARE
;
for

the effect is proportional to the horizontal distance from E

(see Art. 192); therefore,
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equals the effect of the weight B' at the point A.

Also, for the effect at A of the weight at Cy
the

effect of C' at C being C
y-,

we have

Cuv C'nuv C'nv
u : n : : -, : ,

--- = =-
I lu I

equals the effect at A of the weight at C.

The joint effect at A of the three weights is therefore

or, a f = A fn

Adding this to the effect of the uniformly distributed load,

mn
~, gives

"
(P*.)

This represents the greatest strain arising from the uni-

formly distributed load and the three weights disposed as in

Fig. 56] A' at the middle being the greatest strain and B'

the next greatest.

262. General Rule for Equally Distributed and Three

Concentrated Load. Putting the strain [form. (##)] in

equilibrium with the resistance (Art. 35) we have

*** tii)

\'n + B's) + C'^-
= Sbd' =
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and with the symbol for safety added,

b = Wi Un + A'n + B's) + C. 'wv\ (99.)

which is a rule for beams loaded with an equally distributed

load and with three loads relatively disposed as in Fig. 56 ;

A' being the greatest strain, and B' the next greatest, and

A' being at the middle.

263. Example. As an example under this rule : What
should be the breadth of a Georgia pine beam of average

quality, 20 feet long and 12 inches deep, carrying 4000

pounds uniformly distributed, 6000 pounds at 4 feet from

the left-hand end, 6000 pounds at 9 feet from the same

end, and 7000 pounds at 6 feet from the right hand end
;

with the factor of safety a = 4?

Assigning the symbols to the loads and spaces as in Fig.

56, we have

# = 4, ^ = 850, d 12, /= 20, m = 9, nii, r 14,

s = 6, v 4, U= 4000, A' 6000, B' 7000 and

C' 6000.

Substituting these values in formula (99.) gives

b Tt
--

3
---[0(^x4000x11 +6000x1 1 + 7000x6) +Lyt

850x12

(6oooxi 1x4)] =9- 37

or the breadth should be 9f inches.

264-. Aigning the Symbol*. In working a problem of

the kind just given, it is of prime importance to have the

symbols denoting the weights and distances properly located.

In doing this, the first point to settle is as to which of the two

classes (Fig. 55 or 56) the case in hand belongs.

Make a sketch, such as Fig. 55 or 56, according to the

probable position of the largest strain, letter the weights and
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distances as there shown, and then compute the three strains

by the following formulas.

For Fig 55 the strains will be as follows (Art. 195) :

At A, the strain a = -r(A'n + B's+ Cv)

"
B,

"
b' = j(A'm + B'f) + C'^ (101)

"
C,

"
c' =

j(A
'm -f B'r + Cu) (102.)

In the diagram, AH is to be made, by any convenient

scale, equal to a', BG to b', and CF to c
,

as found

by these three formulas, and KL, the height of the para-

bola, is, by the same scale, to be made equal to %U
'

j
. U

is the load equably diffused over the beam
; A', B ! and C'

are the loads concentrated at A
t
B and C respectively,

and / is the span, or length of the beam between bearings.

For Fig. 56 the strains will be as follows :

At A, the strain a' = ~(A 'n + B's) + C'
H

j (103)

"
B,

"
b' =

j(A
r

m+B'r+Cv) (104)

vn Q c
> __ __/^ 'ft

i

j^is

In the case of a carriage beam the loads A', B' and C'

in the formulas (100.) to (105.) are those from the headers ;

and equal %fgm, etc. In this, / and g are constant, as

to the three loads in any given case, and m represents the

length of one set of tail beams
; consequently the loads A'

B' and C will vary as the length of the tail beams.

Hence, in the preliminary work required to ascertain to

which of the two classes any given case belongs, it will suf

fice to use simply the length of the tail beams, instead of the

full weights A', B' and C.
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For example: Take the case given in Art. 259, where
/ = 20, m = 7, s = 7, n=\$, r = 13 and v = 3, the let-

ters being assigned as required by Fig. 55. Here the tail

beams carried by the header at A are 7 feet long, and

those carried by the two other headers are 4 feet
; there-

fore A = 7 and B C 4, and by formulas (100.) and

(101)
ij

.

'

4x7 + 4x3) = 45 85

7 , . 4x13x3
b ==

^(7
X7 + 4X13) + 2^-- =43-15

The result here obtained, a/ being larger than ', shows

that the case has been rightly assigned to the first class, that

of Fig. 55.

265. Reassigning the Symbols. The result of a compu-
tation of the strains may show that the arrangement of the

symbols was erroneous
;
instead of the greatest strain being

in the middle it may be found at one side, or vice versa.

Then the lettering of the loads and spaces must be changed,

to agree with the proper diagram and formulas, before com-

puting the dimensions of the beam
; using formula (96.) or

(97.) for the class shown in Fig. 55, and formula (99.) for the

class shown in Fig. 56.

266. Example. As an illustration of the above, take a

case presumably belonging to the class first treated (Fig. 55),

where' the greatest strain is an outside one. Let / = 20 ;

and let the greatest load, 1750 pounds, be designated by

A', with its distances in = 7 and ;/ = 13 ;
the second

load, 1250 pounds, be designated by B'
y

with its distances

r = 12 and J = 8
;
and the third load, 1250 pounds, be

called C, and its distances v = $ and u = 17. To find
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the united effect at each station, we have, according to

formulas (100.) and (101.),

a' = f1750x13 + 1250x8 + 1250x3 \ 12775

8 / -\ 1250x12x3
b'= --(1750x7

+
1250XI2J +

-

^- =13150

Here b' exceeds a and shows that a mistake has

been made as to the class to which the case belongs. We
must change the symbols and arrange them for the second

class (Fig. 56).

The middle weight is to be called A'
;

the weight be-

fore called A', at 7 feet from one of the walls, is now to

be B'
;

and the third weight C '

. With these changes

made, we have ^'=1250,
v = 1750,

' = 1250, / = 20,

m 8, Ji12, s = 7, r 13 and ^ = 3; and, from for-

mulas (103.) and (104.),

8 / \ 1250x12x3
a' =

(1250x12
+

I750X7J
+ - 2_ =13150

b' = (1250x8+ 1750x13 +
1250x3^

= 12775

The result is now satisfactory, and shows that the prob-

lem belongs to the second class, the one in which the great-

est strain occurs at the middle, and this notwithstanding the

fact that the greatest of the three weights is at the outside.

It will be seen that the results of the two trials are the same,

but reversed, that which was at first taken for a' being now
taken for b' .

267. Rule for Carriage Beam with Three Headers and

Two Sets of Tail Beams. Formula (99) may be trans-

formed so as to make it specially applicable to carriage

beams.

If, in Fig.s^y we suppose the spaces EC and AB to be

openings in the floor, then one set of tail beams will extend



208 COMPOUND STRAINS, GRAPHICALLY EXPRESSED. CHAP. XII.

s

D

from C to A, and another from B to D, giving- three

headers, one each at A, B and C. The load on the

header A will equal that upon C, and will equal one

quarter of the load upon the space occupied by the tail

beams AC, or -fg(inii). Similarly the load at B
will be \fgs. Of the several factors composing formula

(99.) we now have

and since

and the formula itself becomes

Cnv = \fgnv (mv)
U \cfl

n = \cfln

b = jntfcfln + tfS*^^ + i/^) + \fgnv(m-v)\

b =

t> =

b =

(cnl+gnmv +g/) + \fgnv (mv]\

v) +gms* +gnv(mv)\

+gn(mv) (

b = -
(106).
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which is a rule for carriage beams carrying three headers and

two sets of tail beams relatively placed as in Fig. 56, the header

producing the greatest strain being between the other two.

268. Example. What should be the width of a carriage

beam 20 feet long, 12 inches deep, of Georgia pine of

average quality, carrying three headers 14 feet long ; the

headers placed so as to afford a stair opening 4 feet wide

at one wall, and a light well 5 feet wide, 6 feet from the

other wall? The floor beams are 15 inches from centres

and carry 200 pounds per foot superficial, with the factor

of safety a = 4.

In this case we have B = 850, /= 200, a = 4, c = ij,

<^= 12, / = 2O, v = 4, ;# = 9, # = 11, s = 6, r = 14 and

g = 14, and by formula (106.)

1 X2Q + 4H i4xu(9'-4
3

)]
= 5-56

or the breadth should be, say 6 inches.
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QUESTIONS FOR PRACTICE.

269. In a beam 20 feet long, carrying an equably dis-

tributed load of 2000 pounds, and, at 4 feet from one

end, a concentrated load of 5000 pounds, what is the great-

est strain produced, and where is it located ?

270. In a floor composed of beams 12 inches deep,

and set 15 inches from centres, there is a Georgia pine

carriage beam 22 feet long, carrying two headers with an

opening between them. The headers are 14 feet long,

and are placed at 5 and 12 feet respectively from the

left-hand wall. The floor is required to carry 200 pounds

per superficial foot, with the factor of safety a = 4.

What must be the breadth of the carriage beam ?



CHAPTER XIII.

DEFLECTING ENERGY.

ART. 271. Previously Given Rulc are for Rupture.

In the discussion of the subject of transverse strains, the

rules adduced thus far have all been based upon the resist-

ance of the material to rupture, or the power of the material

to resist the destructive effect produced by the load which

the beam is required to carry.

272. Beam not only to Be Safe, but to Appear Safe.

It is requisite in good construction that a loaded beam be

not only safe, but that it also appear safe
; or, that the amount

of deflection shall not appear to be excessive. In determining
the pressure a beam may receive without injury, real or ap-

parent, it is requisite to investigate the power of a beam to

resist bending, rather than breaking that is, to ascertain the

Laws of Deflection.

273. All Material Possess Elasticity. Any load, how-

ever small, will bend a beam. If the load be not excessive,

the beam will, upon the removal of the load, recover its

straightness.

The power of the beam by which it returns to its original

shape upon the removal of its load, is due to the elasticity

of the material. All materials possess elasticity, though

some, as lead and clay, have but little, while others, as india-

rubber and whalebone, have a large measure of it.
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274. Limits of Elasticity Defined. When a beam is

bent, some of its fibres are extended and some compressed,

as was shown at Art. 22 ;
and when the pressure by which

the bending was effected is removed, the fibres resume their

original length. Should the pressure, however, have been

excessive, then the resumption will not be complete, but the

extended fibres will remain a trifle longer than they were

before the pressure, and the compressed fibres a trifle

shorter. When this occurs, the elasticity is said to be in-

jured ; or, the pressure has exceeded the limits of elasticity.

When the fibres are thus injured, they are not only in-

capable of recovering their original length, but (the pressure

being renewed and continued) they are not able to maintain

even their present length, and therefore the deflection must

gradually increase, and the fibres continue to alter in length,

until finally rupture will ensue.

275. A Knowledge of the Limits of Elasticity Requisite.

To secure durability, it is evident that a beam subject to

transverse strain should not be loaded beyond its limit of

elasticity. Hence the desirability of ascertaining this limit.

276. Extension Directly as the Force. Let the effect

offeree in producing extension be first considered. Suspend

a weight of one pound, by a strip of india-rubber one foot

long, and measure the increase in the length of the rubber.

Then, double the weight, and it will be found that the in-

crease in length will be double. If the extension caused by

one pound be one inch, then that caused by two pounds will

be two inches. Three pounds will increase the length by

three inches
; or, whatever weight be suspended, it will be

found that the extensions will be directly in proportion to

the forces producing them, provided always that the force
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applied shall not be so great as to destroy the elasticity of

the material
;

shall not so injure it as to prevent it from

recovering its original length upon the removal of the

force.

277. Extension Directly a the Length. The above

shows the relation between the weight and the extension.

The relation will now be shown between the extension and

the length of the piece extended. At 5 inches from the

upper end of a strip of rubber attach a one-pound weight.

This will produce an extension of, say a quarter of an inch.

Detach the weight and re-attach it at double the length, or

at 10 inches from the upper end. It will now be found

that the 10 inches has become ioj inches; the elongation

being a half inch, or double what it was before. Again,

remove the weight and attach it at 15 inches from the

upper end, and the strip will be extended to I5f inches;

an elongation of three quarters of an inch, or three times the

amount of the first trial. From this we conclude that, under

the same amount of pressure, the extensions will vary directly

as the lengths of the pieces extended.

278. Amount of Deflection. When the projecting beam

ABCD, Fig. 57, is deflected by a .

weight, P, suspended from the |

free end, it bends the beam, not |

only at the point A, at the wall, |

but also at every point of its length |

from A to B, so that the line
|

AB becomes a convex curve, as |

shown.

The exact shape of this elastic

curve is defined by writers upon that subject. A full discussion

FIG. 57.



214 DEFLECTING ENERGY. CHAP. XIII.

of the laws of deflection would include the development of

this curve. The purpose of this work, however, will be at-

tained without carrying the discussion so far. All that will

here be attempted will be to show the amount of deflection
;

or, in the present example, the distance, EB, which the

point B is depressed from its original position.

279, The First Step. In bending a beam, the fibres at

the concave side are shortened and those at the convex side

are lengthened. The first step, therefore, in finding the

amount of deflection, will be to ascertain the manner of this

change in length of fibre, and the method by which the

amount of alteration may be measured.

280. Deflection to bo Obtained from the Extension.

It is manifest that the elongation of the fibres in the upper

edge of the beam AC, Fig. 57, must occur not only at A,

but at every point in the length of the line AB. The fibres

at every point suffer an exceedingly small elongation, and if

we can determine the sum of this large number of small

elongations, we shall have the amount of extension of the

line AB. This may be done in a simple manner, for we

may, without serious error in the result to be obtained,

consider them all as though they were collected and concen-

trated at one place in the line, instead of considering each

one at the point where it occurs.

To effect this, let the line AB be drawn straight, as in

Fig. 58, and the line FG be drawn at right angles to FK,

the neutral line the line which divides between those

fibres which are extended and those which are compressed,
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and therefore a line in which the fibres are not altered

in length. The line AG maybe
taken as the sum of the numerous

small extensions which have oc-

curred in the fibres at the line AB
of Fig. 57.

In order to show the relation

between the extension and the de-

flection, we will investigate the

proportion between AG, the mea-

sure of the one, and EB, the measure of the other.

281. Deflection Directly a the Extension. Make GJ,

Fig. 58, equal to AG, and draw JL parallel with AE.

The two triangles AGF and JGL are both right-angled

triangles, and if AGF be revolved ninety degrees upon G
as a centre, then the line AG will coincide with the line

GJ, the line GF with the line GL, and AF with JL ;

and we have the triangle JGL, equal in all respects to the

triangle A GF.

The triangle GJL is homologous with the triangle

EBA, for the right line AB cuts the two parallel lines

AE and JL, making the angles GLJ and EAB equal;

the angles at E and G are by construction right angles,

and hence the remaining angles at J and B must be

equal, and the two triangles, having all their respective

angles equal, must have their respective sides in proportion,

or be homologous. Now, since the triangle JGL is iden-

tical with the triangle AGF, we have the two triangles

AGF and BEA with their corresponding sides in propor-

tion, or

GF-.AE-.AG'.EB

and as AG measures the extension and EB the deflection,
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it results that the extension is in direct proportion to the

deflection.

282. Deflection Directly as the Force, and a the

Length. By the experiment of Art. 276, it was shown that

the extensions are in proportion to the forces producing

them, and since, as just shown, they are also in proportion

to the deflection, therefore the deflections are in direct pro-

portion to the forces producing them.

In the case of a semi-beam pro-

jecting from a wall, as AC, Fig. 59,

the force producing the deflection

EBj is the product of the weight

P, into the arm of leverage AE,
at the end of which the weight

acts
; or, the force producing the

deflection is in proportion to the

weight and the length.

This is shown in Fig. 60. Here let it be required that the

weight P remain constant in amount and location, while

the length of the semi-beam be increased. We shall then

FIG. 59.

FIG. 60.

have at E, in Fig. 60, the same deflection as at E in Fig. 59,

because the force producing the deflection (PxAE) is the

same in each figure. But at F, the end of the increased
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length, the deflection is greater, owing to an increase in the

size of the triangle AEB, from AEB to AFC. The in-

crease at F over that at E is in proportion to the increase

of AF over AE, because EB and FC, the lines measur-

ing the deflections, are similar sides of the two homologous

triangles AEB and AFC \ and AE and AF, the lines

measuring the lengths, are also similar sides of these tri-

angles. For example, if AF equal twice AE, then we will

have FC equal to twice EB
; or, in whatever proportion

AF is to AE, we shall have the like proportion between

FC and EB. In every case, the deflections will be in

direct proportion to the lengths.

283. Deflection Directly a the Length. Again: If the

weight be moved from E to F, Fig. 61, the end of the above

increased length, then the force with which it acts is in-

creased, and the deflection FC, caused by the weight when

FIG. 61.

located at E, now becomes FJ. If AF equals twice AE,
then the force producing deflection is doubled, because the

leverage at which the weight acts is doubled ;
and since

the deflections are in proportion to the forces producing

them, FJ is double FC\ and in whatever proportion the

arm of leverage be increased, it will be found that the deflec-

tions at the two locations will be in proportion to the dis-
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tances of the weights from the wall AD, or in proportion to

the lengths.

284. Deflection Directly as the Length. Once more :

When the weight was located at E, the length of fibres suf-

fering extension was from A to E, but now this length is

increased to AF.

This increase in length of fibres will increase the exten-

sion (Art. 277), and consequently the deflection (Art. 281).

If AF, Fig. 62, be double the length of AE, then, owing to

the extension of double the length of fibres, the deflection

FJ, Fig- 6l
>
wiU be doubled, or increased to FK, Fig. 62

;

FIG. 62.

and in whatever proportion the beam be lengthened, the

deflection will increase in like proportion, or the deflections

will be in proportion to the lengths.

285. Total Deflection Directly a the Cube of the

Length. Summing up the results as found in the above

several steps in the increase of deflection, we find, by a com-

parison of Figs. 59 and 62, that, owing to an increase of the

beam to twice its original length, we have an increase in

deflection to eight times its original amount. If EB I,
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then FC=2, F?=2FC=4, and FK=2F?=SEB. With

lengths of beam in proportion as i to 2, the deflections are

as i to 8, or as the cubes of the lengths.

This is true not only when the length is doubted, but also

for any increase of length, for a reference to the discussion

will show that the deflection was found to be in proportion

to the length on three several considerations: fast (Art. 282),

on account of an increase in the size of the triangle contain-

ing the line measuring the deflection
;
second (Art. 283),

on account of the additional energy given to the weight by

the increase of the leverage with which it acted
; and, third

(Art. 284), on account of the extension of an additional

length of fibres. The deflection and the length being neces-

sarily of the same denomination, and the deflection being

taken in inches, we therefore take the length, N, in inches,

and we have the deflection in proportion to NNN or to Ns
.

286. Deflecting Energy Directly as the Weight and

Cube of the Length. From Art. 276 the extensions are in

proportion to the weights, and since, from Art. 281, the de-

flections are as the extensions, therefore we have the deflec-

tions in proportion to the weights. Combining this with the

result in the last article, we have, for the sum of the effects,

the deflection in proportion to the weight and the cube of

the length ; or,

6 ; PN*
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QUESTIONS FOR PRACTICE.

287. The rules given in former chapters for beams

exposed to cross strains were based upon the power of

resistance to rupture.

Upon what power of the material may other rules be

based ?

288. To what degree may beams be deflected without

injury ?

289. What relation exists between extensions and the

forces producing them ?

290. What relation exists between extensions and

deflections?

291. What relation, in a beam, is there between the

deflections, the weights and the lengths?



CHAPTER XIV.

RESISTANCE TO FLEXURE.
V

ART. 292. Reistance to Rupture, Directly a the

Square of the Depth. Having considered, in the last chap-

ter, the power exerted by a weight in bending a beam, atten-

tion will now be given to the resistance of the beam.

It was shown in the third chapter, that the resistance to

rupture is in proportion to the square of the depth of the

beam. It will now be shown that the resistance to bending

is in proportion to the cube of the depth.

293. Resistance to Extension Graphically Shown.

For the greater convenience in measuring the extension of

the fibres at the top of a bent lever (Fig. 57), it was proposed
in Art. 280 to consider this extension as occurring at one

point ;
at the wall. In an investigation of the resistance to

bending, the whole extension may still be considered as

being concentrated at that point.

Let the triangle AGF, Fig. 63, represent the triangle

AGF of Fig. 58, in which AF is the face ot the wall, and

AG, at the top edge of the lever, is the measure of the ex-

tension of the fibres there; while at F, the location of the

neutral line, the fibres are not extended in any degree.
It is evident that the fibres suffer extension in proportion

to their distance from F towards G, so that the lines BCy

DE, etc., severally measure the extensions at their respec-
tive locations. Within the limits of elasticity, the resistance
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FIG. 63.

of a fibre to extension is measured by its reaction when re-

leased from tension. Thus, the line BC measures the

extension of the fibres at that location, and when the load is

removed from the lever these

fibres contract and resume

their original length. Hence,

BC also measures the resist-

ance to extension. The resist-

ance of the lever to bending,

therefore, is in proportion to

the sum of the extensions.

The extensions of that por-

tion of the lever occurring be-

tween the lines A G and BC
is measured by the sum of the lengths of all the fibres within

the space ABCG. The average length of these fibres will

be that of the one at the middle, and the number of fibres is

measured by CG, the width they occupy. The sum, there-

fore, of the lengths of all the fibres will be equal to the area

of the figure ABCG.

Again, the sum of the lengths of all the fibres between

the lines BC and DE is equal to the area of the figure

BDEC; so in each of the other figures into which the

triangle AGF is divided a similar result is found. From

this we conclude that the sum of the lengths of all the fibres

exposed to tension is equal to the area of the whole triangle

AGF] and, therefore, that the resistance of the lever is in

proportion to the area of this triangle.

294. Reitance to Extension in Proportion to the

Number of Fibrc and their Distance from Keutral Line.

In the measure of the extensions, we have the reaction or

power of resistance
;
but there is still another fact connected
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with the act of bending which needs consideration. The

power of a fibre to resist deflection will be in proportion to

its distance from F, the location of the neutral line ; or, to

the leverage with which it acts, as was shown in Figs. 8 and 9.

Thus at AG a fibre will resist more than one at DE, while

farther down, each fibre resists less until at F, where there

is no leverage, the power to resist entirely disappears. It

may, therefore, be concluded that the power of each fibre to

resist is in proportion to its distance from F
;
and adding

this power of resistance to that before named, we have, as

the total resistance, the sum of the products of the lengths

of the several fibres into their respective distances from F.

295. Illustration. As an illustration of the above, we

may find an approximate result thus :

Let the line FG, Fig. 63, be divided into any number of

equal parts, and through these points of division draw the

lines BC, DE, etc., parallel with AG. These lines will

divide the triangle into the thin slices ABCG, BDEC, etc.

Now, the resistance of the top slice, ABCG, will be approx-

imately equal to its area into its distance from F\ or, if

CG, the thickness of the slice, be represented by t, and the

average length of fibres in the slice, \(A G + BC\ by b,, then

the area of the slice will equal b
t
t

; and, if a
t

be put for

FG, the average distance of the slice from F will be

a
t \t\ and therefore the resistance of the top slice will be

R = *X,-iO

In like manner, if c
t

be put for the average length of the

fibres of the second slice, we shall have, to represent its

resistance,
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For the third we shall have

R =

Thus, obtaining the resistance of #// the slices and adding the

results, we have the total resistance.

296. Summing up tlic Reistaiicc of the Fibre. To
make a general statement, let x be put for the distance from

F to the middle of the thickness of any one of the slices into

which the triangle is divided, and let r, a constant, be the

length of an ordinate, as DE, located at the distance unity

from F. Then we have by similar triangles the proportion

I : r : : x : xr

and therefore xr will equal the breadth of the slice at any

point distant x from F, or putting x equal to the dis-

tance from F to the middle of the slice, then xr will, be

equal to the average length of the fibres of the slice. The

resistance then of one of the slices, say the top slice, will be

For the top slice, x=a,%t, therefore

(a l J/)V/ = R

Again; for the second slice, x a
t %t therefore

For the third slice we have

In like manner we obtain the resistance of each successive

slice, each result being the same as the preceding one, ex-

cepting the fractional coefficient of /, which differs as shown,

the numerator increasing by the constant number 2. When
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n represents the total number of slices, then the last result

or the resistance of the last slice will be

and the sum of all the resistances, or

R, + Ru -f Rni + etc. +Rn = M

will equal the total resistance of all the fibres, thus :

M= (at \tjrt + (a^tjrt + etc. + (a %2n itfrt

M= rt -i/ + -

Now the number of slices multiplied by the thickness of

each will equal FG, or nt = a
,

from which / = ', and,n

by substituting this value,

X / i \ 2ni
a.\t a\- a .( i 1 = a.-

' n '
\ 2nj

' 2n

and (a, -\tj = a^^- therefore
4#

M=rt -V,^z3)! + etc. + ^=E

M = --[(2- 1)
3 + (2n 3)

2 + etc. 4-

Now, (2 i)
3 = 4^ i x

(2n 3)'
= 4* 3 x 4;* + 9

(2 5)
a = 4^5 x 4^ + 25

To get the sum of these, we have, first, for the sum of the

first terms, n x 4n* = 4^'.
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The coefficients of the second terms, namely, i, 3, 5,

etc., equal in amount the sum of an arithmetical series com-

posed of these odd numbers; or, n 2

(Art. 200), and hence

the sum of these several second terms is n2 x ^n = 4n
3
. The

first and second terms summing up alike cancel each other,

and we have but the third terms remaining. The sum of

these is that of the squares of the odd numbers i, 3, 5, etc.,

and our last formula becomes

M =^ [i

2

4- 3* + 5
2 + etc. + (2n- 1)

2

]

a.
,

a*rt afr .

Now, / = - and '--? -'
,

therefore

297. True Value to wliicli these Results Approximate.

As an example to test this formula, let n 3, then

Again, let n = 4, then

and if n = 5, then

If n = 10, then
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If n 20, then

Reducing these five fractions to their least common

denominator, 43,200, we have

When n = 3, the numerator = 14,000

n= 4,
" " = H,i75

n = 5,
" " = J 4,256

n = 10,
" " = 14,364

n 20,
" " = 14,391

It will be noticed that these numerators increase as n in-

creases, but not so rapidly. As n becomes larger, the in-

crease in the numerator is more gradual, but still remains

an increase, for however large n becomes, the numerator

will still increase, until n becomes infinite, when its limit is

reached.

This limit is equal in this particular case to 14,400, or

one third of 43,200, the denominator
; or, in general, the

value of the fraction tends towards ^ and

M = %afr

298. True Value Defined by the alculu. This

definite result is reached more easily and directly by means

of the calculus.

Taking the notation of Art. 296, we have, for the resist-

ance of one of the slices, the expression

This gives the resistance for a slice at any distance, x, from

F, and if the thickness of the slice be reduced to the

smallest conceivable dimension, then /, its thickness, may
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be taken for the differential of x, or dx y and we have as

the differential of the resistance

dR = x*rdx

from which, by integration, is obtained (Art. 463)

and when the result is made definite by taking the integral

between limits, or between x = o and x= a
t ,

we have

R = a?r (108.)

299. Sum of the Two Resistances, to Extension and to

Compression. The foregoing discussion has been confined

to the resistance offered by that portion of the lever the

fibres of which suffer extension.

A similar result may be obtained from a consideration of

the resistance offered by the remaining fibres to compression.

If c be put to represent the depth of that part of the

beam in which the fibres are compressed, then it will be

found that the resistance to compression will, from (108.),

be equal to

R = tfr (109.)

and the total resistance offered by the lever will be

\ar -f tfr =

It may be shown also, by a farther investigation, that in

levers suffering small deflections, or when not deflected be-

yond the limits of elasticity, a
t
= c

y
or the neutral line

is at the middle of the depth. In the latter case, we have

ttj
= c = -J</, and therefore
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300. Formula for Deflection in Levers. The above

is the result in a lever one inch broad. A lever two inches

broad would bear twice as much
;
one three inches broad

would bear three times as much
; or, generally, the resistance

will be in proportion to the breadth. We have then for a

lever of any breadth

(110.)

This expression gives the resistance to the deflecting

energy, which is (Art. 286) equal to PN 3
. This power,

PN3
, however, not only overcomes the resistance, ^rbd

3
,

but in the act also accomplishes the deflection
;
moves the

lever through a certain distance. Representing this distance

by eJ, we have, as the full measure of the work accom-

plished, d x -^rbd
3
. When the power and the work are

equal, we have

PN3 = -i^rbd
3 from which,

PN3

301. Formula for Deflection in Beams. The expression

(111.) is for a semi-beam or lever. When a full beam, sup-

ported at each end, is deflected by W, a weight located

at the middle, we have to consider that for P we must
take %W, and for N take \L (see Art. 35). These
alterations will produce

WL*
=

for the deflection of a beam supported at both ends and
loaded in the middle.
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302. Value of F, the Symbol for Resistance to Flexure.

In formula (112.) the dimensions are all in inches. As it is

more convenient that .the length be taken in feet, let /

represent the length in feet, then

y^=/,
L=i2l and L3 = ~i2l

3 = 172*1*

By substitution in formula (112.) we have

1728 J^7
5

_ 1296*07*~

rbd 3

Wl

1296 M'd

The symbol r is a measure of the extension, differing in

different materials, but constant, or nearly so, in each.

Putting for -^ the letter F we have

The respective values of F for several materials have

been obtained by experiment, and may be found in Table

XX. Its value in each case is that for a beam supported at

each end, and with the load in pounds applied at the middle

of /, the distance in feet between the bearings ;
while b,

d and 6 are in inches
;

6 being the deflection within

the limits of elasticity.

303. Coniparion of F with E
9
the Modulus of Elas-

ticity. The common expression for flexure of beams when

laid on two supports and loaded at the middle is [Tate's

Strength of Materials, London, 1850, p. 24, formula (49*)]
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in which E represents what is termed the Modulus or Co-

efficient of Elasticity, which is (same work, p. 3),
" that force,

which is necessary to elongate a uniform bar, one square

inch section, to double its length (supposing such a thing

possible) or to compress it to one half its length" ;
and /

represents the Moment of Inertia (Arts. 457 to 4-63) of the

cross-section of the beam.

In this expression the dimensions are all in inches. To

change L to feet we have = / equals the length in feet,

or L3 = i27*= i;28/
5

.

Substituting this value in (114-} we obtain

1728 Wl
3

$6Wl
3

6

or _
36

In formula (113.} we have

F^- 1

Multiplying this by 12 gives

48^7 El

E Wls

Wl

and since -fabd* I (see Art. 463)

Comparing this with above value of ^ we have

jg-- = \2F or E
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304. Relative Value of F and E. In Table XX. the

value of F for wrought iron is, from experiments on rolled

iron beams, 62,000. Then

432^= E 432 x 62000 = 26784000,

cquab the modulus of elasticity for the wrought-iron

of which these beams were made. They were of Ameri-

can metal. Tredgold found the value for English iron

to be = 24,900,000; and Hodgkinson from 19,000,000 to

28,000,000.

An average of the results in seven cases gives 25,300,000

as the modulus of elasticity for English wrought-iron.

305. Comparison of F with E common, and with

the E of Barlow. Barlow, in his " Materials and Con-

struction/' p. 93, foot-note (Ed. of 1851), uses the expression

L3W L3W
-T-TS* = E, instead of TT^ >

f r a lever loaded at one end ;

UW '

and on p. 94,
-

f-h iiT = 1 ne dimensions are all in inches.

Changing the length to feet, we have

bd't

E wr
108

Comparing this with (113.), which is

ld'6

we have -

'$-
= F, or ioSF=E. We found before (Art.

IOo

303) that E = 432^, and since 4 x 108 = 432, therefore
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the E of Barlow equals one quarter of the E in common

use, and his values of E are equal to 108 times the values

of F as given in this book.

For example ;
on p. 147, in an experiment on New Eng-

land fir, he gives, by an error in computation, E = 54780x5,

but which, corrected, equals 373326. Dividing this by 108

as above, gives

By reference to Table XX. we find that for spruce, the

wood most probably intended for New England fir,

F = 3500

Again; taking Barlow's four experiments on oak, p. 146,

and correcting the arithmetical errors, we have E = 361758,

482344, 291227 and 242860. This gives an average of

344547, and dividing it by 108 as above, we have

F= 3190

By reference to Table XX. we find that by my experi-

ments

F = 3100

306. Example under the Rule for Flexure. To make

a practical application of the rule in formula (113.\ let it be

required to find the depth of a white pine beam 10 feet

long between bearings and 4 inches broad; and which, with

a load of 2000 pounds at the middle of it^length, shall be

deflected 0-3 of an inch.
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We obtain from (113.)

or, in this case,

Wl 3

d 3 -~
Fbd

d 3
200 x IC)8

2900 x 4 x o 3

2000000

or the depth should be 8-31, say 8 inches.

QUESTIONS FOR PRACTICE.

307. How may the resistance of a fibre to extension be

measured when the elasticity remains uninjured ?

308. In a beam exposed to transverse strain, what is the

resistance to extension in proportion to ?

309. When the bending energy and the resistance of a

beam are in equilibrium, what is the expression for this

relation ?

310. Given a white pine beam 20 feet long, 6 inches

broad arid 12 inches deep, and loaded with 1000 pounds
at the middle. What will be the deflection, the value of

'

F
being 2900 ?



CHAPTER XV.

RESISTANCE TO FLEXURE LIMIT OF ELASTICITY.

ART. 311. Rule for Rupture and for Flexure Com-

pared. The rules for determining the strength of materials

differ from those denoting their stiffness. The former are

more simple ;
all their symbols being unaffected except one,

and this only to the second power, or square ;
in the latter,

two of the symbols are involved to the third power or cube.

Many, in determining the dimensions of timbers exposed

to transverse strains, are induced, by the greater simplicity

of the rules for strength, to use them in preference to those

for stiffness, even when the latter only should be used.

A beam apportioned by the rules for strength will not

bend so as to strain the fibres beyond their elastic limit, and

will therefore be safe
;
but in many cases the beam will bend

more than a due regard for appearance will justify.

When timbers, therefore, as those in the ceiling or floor

of a room, might deflect so much as to be readily percep-

tible, and unpleasant to the eye, they should have their

dimensions fixed by the rules for stiffness only.

312. The Value of a, the Symbol for Safe Weight. In

order that the symbol a in the rules for strength, denoting

the number of times the safe weight is contained in the

breaking weight, may be of the proper value to preserve the

fibres of the timber from being strained beyond the elastic
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limit, a few considerations will now be presented showing the

manner in which this value is ascertained.

In T^. 64 let ABCD represent a lever with one end, AD,
imbedded in a wall, AD being the face of the wall, and car-

rying at the other end, BC, a

weight P\ the weight de-

flecting the lever from the line

AE to the extent EB. The

line FH is the neutral line,

and FG is drawn at right

angles to FH.

As in Figs. 58 and 63, so

here the triangle AFG shows

the elongation of the fibres in

the upper half of the beam,

and AG the elongation to the limits of elasticity of the

fibres at the upper edge AB. The triangle AFG is in pro-

portion to the triangle ABE, as shown in Art. 281. If

AB=N (this being a semi-beam), and e equals the exten-

sion per unit of N, then AG = eN.

We have by similar triangles

AF : AB :: AG : EB

Then if AD = d and EB = d

\d : N : : eN : 6 =

2eN*

FIG. 64.

The dimensions here are all in inches. To change N in

inches to n in feet, we have

N = n, NlIn and </V* = 144;**
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from which

and from this we obtain

dd
e =

288^

in which d is the deflection when at the limit of elasticity,

and in which e, d and <? are in inches, and n in feet.

This is for a semi-beam, and it will be perceived that the

deflection EB, in Fig. 64, caused by the weight P, is pre-

cisely the same as would be produced in a full beam by dou-

ble this weight placed at Z>, the beam being in a reversed

position.

When, therefore, / equals the length of the full beam in

feet, n will equal \l . Substituting this value of n in the

above expressions, we have

d (116>

and for the value of e,

dd

In Art. 302 we have, for the stiffness^ of materials,

formula (113.),

F^W*

For (5 substitute
*-j ,

its value as just found, and, in

order to distinguish the weight used to produce flexure

from that used to produce rupture, let us for the moment
indicate the former by ,

and the latter by W. Then,
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from the above,

Gl 3 =
a

Gl j2Fbd
2
e

The relation between F, the measure of the elasticity of

materials, and >, the resistance to rupture, may be put

thus :

F
B : F : : i : m = -^ ; or, F= Bm

>

Substituting this value for F in the above, we have

Gl = J2Bmbd*e

Gl = Bbd*

Wl
Now the formula lor strength, B ,-j^, ^form. (10.) in

Art. 36] gives Wl Bbd s

;
a comparison of this value of

Bbds with that above shown gives

Gl

72em
= Wl

Since G is the deflecting weight which bends the lever

to the limit of elasticity, it is therefore the ultimate weight

which may be trusted safely upon the beam, and as a is a

symbol put to denote the number of times G is contained in

W
y
the breaking weight, therefore

W
G : W : : I : a = ~ and Ga = W

(jr

Substituting this value for W in the above, we have

Gl
== Gal

~
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p
As above found, m = -5- ,

therefore
Z)

From this expression the values of a for various ma-

terials have been computed, and the results are to be found

in Table XX.

313. Rate of Deflection per Foot Length of Beam.
The value of a as just found is based upon the elasticity of

the material, and is measured by this elasticity at its limit.

This limit is that to which bending is allowable in beams

apportioned for strength. In beams required to sustain their

loads without bending so much as to be perceptible or offen-

sive to the eye, the bending is generally far within the elastic

limit. The deflection in these beams is rated in proportion
to the length of the beam

; or, when r in inches equals the

rate of deflection per foot in length of the beam, then rl= rf.

The deflection by formula (116.) is

d

therefore ri

r =

This gives r at its greatest possible value, and shows
that it should never exceed 72 times the ratio between the

length and depth, multiplied by e
;

e being the measure
of extension as recorded in Table XX. The ratio between
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the length and depth is to be taken with / in feet and d
in inches.

The value of r as required in beams of the usual pro-

portions and deflection, will not be as great as that here shown

to be allowable. In cases where the rate of deflection, r, is

as great as 0-05 of an inch per foot, and the length of the

beam is short in comparison with the depth (say -j- is as

small as - V then there will be danger of r exceeding the

limit fixed by this rule. When the fraction -7- is less than

- then the rate r should be tested to know whether it has

exceeded the proper limit. It is seldom, however, that a

beam 7 inches high is used shorter than 5 feet, or one

14 , inches high shorter than 10 feet. Generally the num-

ber of feet in the length exceeds the number of inches in the

depth.

3(4. Rate of Deflection in Floors. The rate of deflec-

tion allowable so as not to be unsightly is a matter of judg-

ment. Tredgold, in his rules for floor beams, fixed it at ^
of an inch per foot of the length, or 0-025. This is thought

by some to be rather small, especially since in floors the limit

of the rate is seldom reached
;
in fact never, except when the

floor is loaded to its fullest capacity, a circumstance which

occurs but seldom, and then only for a limited period. For

this reason, it is proper to fix the rate at say
-

s ,
or 0-03

of an inch per foot. With this as the rate for a full load, the

usual rate of deflection under ordinary loads will probably
not exceed o-oi or 0-015. In the rules, the symbol r

is left undetermined, so that the rate may be fixed as judg-

ment or circumstances may dictate in each special case.



QUESTIONS FOR PRACTICE.

315. What is the distinction between the rules for

strength and those for stiffness!

316. What expression shows <?, the deflection at the

elastic limit?

317. What expression gives the measure of extension at

the elastic limit ?

318. What expression shows the ultimate value of a,

the factor of safety ?

319. What expression gives the ultimate value of r,

the rate of deflection ?



CHAPTER XVI.

RESISTANCE TO FLEXURE RULES.

ART. 320. Deflection of a Beam, with Example. The

formula (113.) for the deflection of beams supported at each

end and loaded at the middle, is

E* __
.

from which, d = -^7-75 (120.)

This is the deflection of any beam placed and loaded as

above. For example: \Vhatisthedeflectionofawhitepine

beam of 4 x 9 inches, set edgewise upon bearings 16 feet

apart, and loaded with 5000 pounds at the middle
;

the

value of F being 2900, the average of experiments, the

results of which are recorded in Table XX. ?

The deflection in this case will be

5000 x i6
3

50 x 1024 = 2-42183

2900 x 4 x 9 29 x 729

This is a large deflection, much beyond what would be

proper in a good floor, for at 0-03 inch per foot of the

length of the beam, the rate of deflection adopted (Art. 314),

we should have

6 = 16 x 0-03 == 0-48

or, say half an inch, whereas the 5000 pounds upon this
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beam produces five times this amount. Although so greatly

in excess of what a respect for appearance will allow, it is

still, however, within the limits of elasticity, as will be seen

by the use of formula (116.), in which we have

Obtaining from Table XX. the average value of e, equal

0-0014, we have

72 x 0-0014 x i6
a

d = - - = S x 0-0014x256 = 2-8672

as the greatest deflection allowable.

321. Precautions as to Values of Constants F and e. -

The above is the ultimate deflection within the limits of

elasticity, and is 0-4454 in excess of the 2-4218 produced

by the 5000 pounds. In general, it would be undesirable to

load a beam so heavily as this, or to deflect it to a point so

near the limit of elasticity, and, unless the timber be of fair

quality, would hardly be safe.

Some pine timber would be deflected by this weight much
more than is here shown in fact, beyond the limits of elas-

ticity. In the above computation, F was taken at 2900,

the average value, and the measure of elasticity, e, was

taken at 0-0014, also the average value ; whereas, had these

constants been taken at their lowest value, such as pertain to

the poorer qualities of white pine, and in which F= 2000

and ^ = 0-001016, the limits of elasticity would have been

found at a trifle over 2 inches, while the deflection would

have reached 3^ inches.
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322. Values of Constants J^ and c to foe Derived from

Aetual Experiment in Certain Cases. For any important

work, the capacity of the timber selected for use should be

tested by actual experiment. This may be done by submit-

ting several pieces to the test of known weights placed at the

centre, by increasing the weights by equal increments, and

by noting the corresponding deflections. From these deflec-

tions, the specific values of F and e for that timber may be

ascertained
; and with these values the timber may be

loaded with certainty as to the result. In the absence of a

knowledge of the elastic power of the particular material to

be used, a sufficiently wide margin should be allowed, in

order that the timber may not be loaded beyond what the

poorer kinds would be able to carry safely.

323. Deflection of a L,ever. The rule for deflection, as

discussed in these last articles, is appropriate for a beam sup-

ported at both ends and loaded in the middle. A rule will

now be developed for a semi-beam or lever; a timber fixed

at one end in a wall,, and with a weight suspended from the

other. The deflection in this case is precisely the same as

that produced by twice the weight, laid at the middle of a

whole beam, double the length of the lever, and supported at

each end.

Let the weight at the end of the lever be represented by

P, and the length of the lever by n, then W of formula

wr
(120), which is d =

-pi~r3
**i equal 2P, and / will equal

2-n, and we have, by substituting these values for W and /

Fbd
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324. Example. The deflection above found is that pro-

duced in a lever by a weight suspended from its free end.

As an example : What would be the deflection caused by
a weight of 1500 pounds suspended from the free end of a

lever of Georgia pine, of average quality, 3x6 inches

square and 5 feet long ?

Here we have P= 1500, n= $, F= 5900, b = 3 and

d = 6
;
and therefore

16 x 1500 x 5
3

80 x 1256- 4- = - ^ = 0-7847
5900 x 3 x 6 59 x 216

325. Tet by Rule for Elastic Limit in a Lever. To

test the above, to ascertain as to whether the deflection is

within the limits of elasticity, take / = 2n = 10, and by
formula (116.) we get

72d 2 72 X 0-00109 X I0
2

d = -L
r = L-

~~g~~ -=12x0-109=1.308

This is satisfactory, as it shows that the lever has a de-

flection (0-7847) of not much more than half that within the

elastic limit (i -308), and therefore a safe one.

326. Load Producing a Given Deflection in a Beam.

By inversions of formulas (120.) and (121), we may have

rules for ascertaining the weight which any beam or level

will carry with a given deflection.

First ; for a beam, we take formula (120.)

Wl 3

~~Fbd s

and have
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327. Example. Foran example: What weight upon the

middle of a beam of spruce, of average quality, 5 inches

broad, 10 inches high, and 20 feet long between the bear-

ings, will produce a deflection of 0-03 inch per foot, or

0-6 inch in all?

Here we have F= 3500, =
5, d 10, 6 = 0-6 and

/ 20; therefore

3500 x 5 x io
3
x 0-6 10500

W.**.r -53-
- =

-g =1312.5

328. Load at the Limit of Elasticity in a Beam. Again :

What weight could be carried upon this beam if the deflec-

tion! were permitted to extend to the limit of elasticity ?

Formula (116.) gives us

and from Table XX. we have the average value of e for

spruce equal to 0-00098, and therefore

72 x 0-00098 x 20
2

d= ~ -^ 72 x 0-00098 x 40= 2-8224

Substituting this new deflection in the former statement,

we have

W= 25
UJIJ^.8224 =

49_39 =^
This 6174 pounds for good timber would be a safe load,

but if there be doubts as to the quality, the load should be

made less according to the lower Values of F and e.
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329. Load Producing a Given Deflection in a Lever-

Example. Second; for a lever, we take formula

i6/V6=

and find by inversion

.

An application of this rule may be shown in the answer

to the question : What weight may be sustained at the end of

a hemlock lever, 6 inches broad and 9 inches high, firmly

imbedded in a wall, and projecting 8 feet from its face ?

The hemlock is of good quality, and the deflection is limited

to i inch.

Here we have ^=2800, b = 6, d = 9, d=i, and n = 8
;

therefore

_ 2800 x 6 x 9
3
x i

_

~H6~^V~

that is, 1495 pounds at the end of the lever would deflect it

one inch.

330. Deflection in a Lever at the Limit of Elasticity.

What deflection in this lever would mark the limit of elas-

ticity ?

Formula (110.) is

Taking / at twice n we have /=: 16, ^==9, and

0-00095 ;
and as a result

72x0-00095 x i6
2

os=v~
^

-==8x0.00095x256=1.9456
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331. Load on Lever at the Limit of Elasticity. What

weight would deflect this lever to the limit of elasticity ?

For this we have

2800 x 6 x o3
x i -9456p=~ -

This is nearly double the weight required to deflect it one

inch, as before found ; and the deflection is also nearly

double. The weight and the deflection are directly in pro-

portion. If 1500 pounds deflect a beam one inch, 3000

pounds will deflect it two inches.

332. Value of W, I, 6, d and 6 in a Beam. By a

proper inversion of the formulas for beams, any one of the

dimensions may be obtained, provided the other dimensions

and the weight are known.

Thus we have (form.

3

and from this find

the length,

the breadth, b =^ (125)

and the depth, d =

and, as in formula (120) t

Wl 9

the deflection, <J =
-757-73rba
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333. Example Value of I in a Beam. Take an exam-

ple under formula (124-}- What should be the length of a

beam of locust of average quality, 4 inches broad and 8

inches high, to carry 5000 pounds at the middle, with a

deflection of one inch ?

In formula (124} ^=5050, = 4, d=%, 6 = i and

W= 5000; hence ___
x 4 x 8

3
x i

=12-74
5000

or the answer is \2\ feet.

334. Example Value of b in a Beam. As an example
under formula (125.}, let it be required to know the proper

breadth of an oak beam of average quality. The depth is

6 inches and the length 10 feet. The load to be carried is

500 pounds placed at the middle, and the deflection allowed

is 0-3 inch.

In this case, ^=500, / 10, ^=3100, d= 6 and

6 = 0-3 ;
and by substitution

500 x io
3

_ 50000 _r ~~~63
x 0-3"

~
2^088

~

or 2\ inches for the breadth.

335. Example Value of d in a Beam. As an example
under formula (126.}, find the depth of a beam of maple of

average quality, which is 5 inches broad and 20 feet long,

and which is to carry 3000 pounds at the middle, with one

inch deflection.

Here we have F $i$o, W 3000, /=2O, =5 and

<J = i
;
and hence

// 3OOO X 20
3

</=r = 0.768
5i$oxsx i

or a depth of Qf inches.
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336. Values of r, n, l>, a and 6 in a Lever. The

rules for the quantities in a semi-beam or lever are derived

from formula (12'!), which is

i6/V

and are as follows :

The load,

d =
Fbd 3

P = Fbd36

i6n3

The length, n = V .

The breadth, b =

d _ Vi6/V
Fbd

(123)

(127)

. (128)

(129)

337. Example Value of n in a Lever. As an example
under (127) : What length is required in a semi-beam or

lever of ash of average quality, 3x7 inches cross-section,

and carrying 200 pounds at the free end, with a deflection

of half an inch ?

In this example, P= 200, ^=4000, = 3, d= 7 and

6 = o- 5 ;
and we have

_ 1/4000
x 3 x 7

3
x p. 5 =

16x200

or the length is to be 8 feet J\ inches.

_

338. Example Value of 6 in a Lever. Under formula

(128) : What is the proper breadth for a lever of hickory

of average quality, 3 inches deep, projecting 4 feet from
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the wall in which it is fixed, carrying a load of 200 pounds
at the free end, and having a deflection of one inch ?

In the formula, F 3850, d^, 6= i, p 200 and

n = 4. Substituting these values, we have

>

i6x 200 x4
3

_"7- [
' 97

The breadth must be 2 inches.

339. Example Value of d in a Lever. What must be

the depth of a bar of cherry of average quality, i^ inches

broad, projecting 3 feet from the wall in which it is im-

bedded, and carrying at its end a load of 100 pounds, with

a deflection of f of an inch ?

Here P 100, n = 3,.F=2%$o, =1-5 and d = o-75;

and formula (129.) becomes

d = V'
l6xIOQX 3

3

= 2
2850 x i -5 x 0-75

The depth required is 2f inches.

340. Deflection Uniformly Distributed Load on a

Beam. The cases hitherto considered in this chapter have

all had the load concentrated either at the middle of a beam

or at the end of a lever. When the weight is distributed

equably over the length of the beam or lever, the deflection

is less than when the same weight is so concentrated.

In comparing the values of the deflecting energies pro-

ducing equal deflections in the two cases, we have [formula

(511), p. 477, of " Mechanics of Engineering and Architec-

ture," by Prof. Moseley, Am. ed. by Prof. Mahan, 1856,
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and changing the symbols to agree with ours], for a beam

loaded at the middle,

WL3

o

and [formula (530.}, p. 484, same work], for a beam uni-

formly loaded,

UD

Comparing these two equal values of eJ, we have

WL3 UU
Dr'

or, with equal deflections, the weight at the middle of the

beam is equal to f of the uniformly distributed load.

Thus, 100 pounds uniformly distributed over the length

of a beam will deflect it to the same extent that 62^ pounds
would were it concentrated at the middle of the length.

Then, since U represents a uniformly distributed load,

%U will equal the W of formula (120.\ which formula is

Wl3

Substituting the value of W, as above, and transposing, we

have

for the relation of the elements in the deflection jof a beam

by a uniformly distributed load.
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341. Value of U, 19 b, d and 6 in a Beam. By in-

versions of formula (130.) we have the following rules

namely :

The weight, U=^^ (131.)

The length, / =

The breadth, b =^ (133.)

The depth, d = *^j^ (134.)

The deflection, 6 = L^ (135)

34-2. Example Value of U, the Weight; in a Beam.

In a spruce beam of average quality, 20 feet long between

bearings, 4 inches broad and 12 inches deep : What weight

uniformly distributed over the beam will deflect it 2 inches ?

In this example, F = 3500, b = 4, d = 12, 6 = 2 and

/= 20; and by formula (131.)

20

or the weight required is 9677 pounds.

343. Example Value of , the Length, in a Beam.
In a 3 x 10 white pine beam of average quality : What is the

proper length to carry 6000 pounds uniformly distributed,

with a deflection of 2 inches?
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Here F = 2900, b 3, d = io, 6 2 and U = 6000
;

and by the substitution of these in formula (132.}

A/2QOO=Y - =16-68_
x 6000

or the required length is 16 feet 8 inches.

344. Example Value of &, the Breadth, in a Beam.
Given a beam of average quality of Georgia pine, 20 feet

long and 10 inches deep. If this beam carry a uniformly
distributed load of 8000 pounds, with a deflection of if

inches, what must be the breadth ?

We have, as values of the known elements, U = 8000,

120, F= 5900, d 10 and 6=1.75; and formula (133.)

gives us

5 x 8000 x 2o
3

=
8 x 5900 x io

3

x i~7s
=3-874

The breadth must be 3 j-
inches.

34-5. Example Value of d, Hie Depth, in a Beam.

A girder of average oak, 8 inches broad, and io feet long

between bearings, is required to carry 10,000 pounds uni-

formly distributed over its length, with a deflection not to

exceed -^ of an inch. What must be its depth ?

The elements of this case are U =. 10000, / = io,

F= 3100, b = 8 and d = 0-3. Applying formula (134-) we

find

or we must make the depth 9^ inches.
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346. Example Value of (5, the Deflection, in a Beam.

We have a 3 x 6 inch beam of hemlock of average quality,

10 feet long. What amount of deflection would be produced

by 3000 pounds uniformly distributed over its length ?

7=3000, / 10, F = 2800, b 3 and d 6; and the for-

mula applicable, (13u.\ becomes

5 x 3000 x io
3

8 x 2800 x 3 x 63
"

or a resulting deflection of i inch.

347. Deflection Uniformly Distributed Load on a

Lever. For a load at the free end of a lever [Moseley's Me-

chanics (cited in Art. 340), formula (509.\ p. 476, changing

the symbols] we have

6 =

and [page 482, same work, formula (525.)~\ for a lever with a

uniformly distributed load, we have

6 =

Comparing these equal values of 6 we have

PN 3 UN 3

'-

TEI
Dr '

u
8

or, the deflection by a uniformly distributed load is equal to

that which would be produced by f of that load if suspended
from the end of the lever.
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348. Values of C7, n, b, d and fi in a Lever. In for-

mula (123.), which is P
g-y-,

we have the relations exist-

ing between the elements involved in the case of a lever

under strain.

If the weight uniformly distributed over the length of the

lever be represented by /, then P= -f U and formula (123.)

becomes

and from this we have the following:

The weight, V =~r (136.)

The length, n = \ -^r (137^

The breadth, b = -^/^ (138.)

The depth, d =

The deflection, d = - ŝ (140.)

349. Example Value of U, the Weight, in a Lever.

In a Georgia pine lever of average quality, 6 inches broad

and 10 inches deep, and projecting 10 feet from the wall

in which it is imbedded : What weight uniformly distributed

over the lever will deflect it 2 inches?

In this example, F= 5900, b = 6, d=io, 6 = 2 and

n = 10
;
and by formula (136.\

TT 5ooox6x io
3
x 2U = -= 11800

OX IO
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or the uniformly distributed weight required is 11,800

pounds.

Three eighths of this weight, or 4425 pounds, concen-

trated at the free end of the lever, will deflect it the same

amount, viz. : 2 inches.

350. Example Value of n9 the Length, in a Lever.

In a lever of the same description as in the last article, except

as to length and load : What is the proper length to carry

8000 pounds uniformly distributed, with a deflection of 2

inches ?

Here we have ^=5900, # 6, d= 10, 6=2 and

U= 8000
;
and by the substitution of these in formula (137.)

SQOO x 6 x io
3 x 2

3
.
--

= n-383

or the required length is 1 1 feet 4^ inches.

351. Example Value of 6, the Breadth, in a Lever.

Given a lever of like description as in Art. 349, except as

to breadth and load. If this lever carry a uniformly distrib-

uted load of 6000 pounds, what must be the breadth?

We have, as values of the known elements, U= 6000,

n=io, ^=5900, d= io and d=2\ and formula (138.)

gives us
6 x 6000 x io

3

* = i
- = 3-051

59OO X IO X2

The breadth must be 3 inches.

352. Example Value of d, the Depth, in a Lever.

A lever of like description as in Art. 349, except as to depth
and load, is required to carry 10,000 pounds uniformly dis-

tributed over its length : What must be its depth ?
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The elements of this case are U = 10000, n = io,

F = 5900, b = 6 and 6 = 2. We apply formula (139.) and

find

//6x loooox io
3

d = V - ? 9 403
5900 x 6 x 2

or we must make the depth 9^ inches.

353. Example Value of d, the Deflection, in a L-ever.

We have a lever of like description as that in Art. 349, ex-

cept as to load and deflection : What amount of deflection

would be produced by 5000 pounds uniformly distributed

over its length ?

/r= 5000, 7210, 7^=5900, b = 6 and d= io; and the

formula applicable, (140), becomes

6 x 5000 x io
a

6=- = 08475
5900 x6x io

or a resulting deflection of J of an inch.



QUESTIONS FOR PRACTICE.

354. Given a beam loaded at middle : What are the rules

by which to find the weight, length, breadth, depth and de-

flection ?

355. Given a lever loaded at the free end: What are the

rules by which to find the weight, length, breadth, depth and

deflection ?

356. In a beam with the load uniformly distributed: What
are the rules by which to obtain the weight, length, breadth,

depth and deflection?

357. In a lever with the load uniformly distributed : What
are the rules by which to obtain the weight, length, breadth,

depth and deflection ?



CHAPTER XVII.

RESISTANCE TO FLEXURE FLOOR BEAMS.

ART. 358. Stiffness a Requisite in Floor Beams. The

rules given in Chap. VI. for the dimensions of floor beams

are based upon the ascertained resistance of the material to

rupture, and are useful in all cases in which the question of

absolute strength is alone to be considered. For warehouses

and those buildings in which strength is principally required,

the rules referred to are safe and proper ;
but for buildings of

good character, in which the apartments are finished with

plastering, the floor timbers are required to possess stiffness

as well as strength ;
for it is desirable that the deflection of

the beams shall not be readily noticed, nor be injurious to

the plastering.

359. General Rule for Floor Beams. The relations of

the several elements in the question of stiffness, in beams uni-

formly loaded throughout their entire length, are found in

formula (130.),

Fbd't

The load upon the floor beam is here represented by U,

and its value is U = cfl (see Art. 92) ;
in which c is

the distance apart between the centres of the floor beams,

/ is the number of pounds weight upon each square foot of

the floor, and / is the length of the beam
;

c and / both
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being in feet. If for U we substitute this value, and for 6

put rl (see Arts. 313 and 314), we have

= Fbd 3
r (141 .)

360. The Rule modified. For the floors of dwellings

and assembly rooms, ft
the load per foot, may be taken (see

Art. 115) at 70 pounds for the loading and 20 pounds for

the weight of the materials, or 90 pounds in all; and r, the

rate of deflection per foot of the length, at 0-03 (see Art.

314). Formula (141-) thus modified becomes

90 x %cl
3 =

= FM.

8x0-03

= Fbd 3

cl
3 =

p
This coefficient, ~7> taking F at its average value

for six of the woods in common use, reduces to

firf =3-15 for Georgia pine,

= 2-69
"

locust,

= 1-65
"

oak,

f|4f =1-87 "
spruce,

= 1-55
" white pine,

= 1-49
" hemlock.

361. Rule for l>Aveliin^ and Assembly Rooms. For

p
the coefficient in (14&-), ~^ putting the symbol i, we
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have this simple rule for problems involving the dimensions

of floor beams in dwellings and assembly rooms, namely,

cl
3 = ibd 3

(143.)

and we have the value of i for average qualities of six of

the more common woods, as taken in Art. 360, as follows :

For Georgia pine, i = 3-15
"

locust, i = 2-69
"

oak, i 1-65
"

spruce, i 1-87
" white pine, i= 1-55
"

hemlock, i= 1-49

362. Rules giving the Values of c, J, 6 and d. Tak-

ing formula (14$ ) we derive by inversions the following

rules, namely :

The distance from centres, c = -j-r (144-)

The length, / = \ -
(145.)C

The breadth, b =
j^3

The depth, d = V~ (147.)

363. Example Distance from Centres. At what dis-

tance from centres should 3x12 inch Georgia pine beams

of average quality, 24 feet long, be placed in a dwelling-

house floor?

Here we have 2':= 3 -15, =
3, d = 12 and /= 24;

and by formula (144-)

3-15 x 3 x 12* _

or the distance c should be about 14^ inches.
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364. Example Length. Of what length may average

quality white pine beams 3 x 10 inches square be used, when

placed 16 inches from centres ?

In this case 2 = 1.55, =
3, d=io and c= i^; and

formula (14&*) gives

/- ^3487-5 = I5-I65

or these beams may be used 1 5 feet 2 inches long between

bearings.

365. Example Breadth. In floor beams 20 feet long

and 12 inches deep, of oak of average quality, placed one

foot from centres : What should be the breadth ?

Here, c i, I 20, d = 12 and 2=1-65. With for-

mula (146.\ therefore, we have

1-65 x I2
3

The breadth should be nearly 2-J ,
or say 3 inches.

366. Example Depth. What should be the depth of

spruce beams of average quality when 3 inches broad and

20 feet long, and placed 20 inches from centres? The sym-
bols in this case are <r=if, /=2O, =3, and i = 1-87;

and by formula (14? )
we find

W^
1-87x3

or the depth required is 13! inches. Beams 3x13 could be

used, provided the distances apart from centres were cor-

respondingly decreased. The new distance would be (form.

144-) !&2 instead of 20 inches.
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367. Floor Beams for Store. The several values of

/ for dwellings and assembly rooms, as given in Art. 361,

will be appropriate also for stores for light goods, because

timbers apportioned by the rules having these values of t,

will bear a load of 200 pounds per superficial foot before

their deflection will reach the limit of elasticity.

For first-class stores those intended for wholesale busi-

ness, as that of dry-goods the values of i, as above given,

are too large. The proper values for this constant may be

derived as below.

368. Floor Beams of First-elass Stores. The load upon
the floors of first-class stores may be taken at 250 pounds per

superficial foot, and the deflection at 0-04 of an inch per foot

lineal (see Arts. 313 and 3I4-). Beams proportioned by these

requirements will bear a load of about 3 x 250 = 750 pounds

per foot before the deflection will reach the limit of elasticity.

With 250 as the loading, and, say 25 pounds (Art. 99)

for the weight of the materials of construction, we have

7-275.
Formula (141 )>

modified in accordance herewith, putting

r = 0-04, becomes

5 x 2'j^cl
3 = 8 x o-o<\Fbd

s

369. Rule for Beams of First-elass Stores. Reducing
zp

the above constant, ,
for six of the more common

4296^

woods of average quality, and putting the symbol k for the

results, we have for



BEAMS FOR FIRST-CLASS STORES. 265

Georgia pine, k = 1-37

Locust, k i- 1 8

Oak, k 0-72

Spruce, = 0-81

White pine, k = 0-67

Hemlock, = 0-65

With this symbol k, the rule for floor beams of first-class

stores is reduced to this simple form,

d3 = kbd5

(149)

370. Values of c, I, b and d. By proper inversions,

we obtain from formula (149.), rules for the several values

required, thus :

The distance from centres, c =
^- (150.)

The length, / = j/^! (151.)

The breadth, b = |~ (152)

The depth, d = V-^ (153)

371. Example Distance from Centres. In a first-class

store : How far from centres should floor beams of Georgia

pine of an average quality be placed, when said beams are

4 x 12, and 20 feet long between bearings?

In this example, we have k = i -37, b = 4, d = 12 and

/ 20. Then by formula (150.)

or the distance from centres is 1-184 feet
> equal to about

inches.
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372. Example Length. At what length may 4x10
inch beams of average oak be used in the floors of a first-

class store, when placed 12 inches from centres? Here we

have = 0-72, b = 4, ^=10 and c\\ and by formula

(151)

j 4/0-72 Xx io
/= - - = 14-23

or the length should be 14 feet 3 inches.

373. Example Breadth. The floor beams in a first-

class store are to be 20 feet long and 14 inches deep, of white

pine of average quality. When placed 12 inches from cen-

tres, what should be their breadth ? Taking formula (152.} we

have, as values of the symbols, c=i, I 20, k = o-6j and

^=1; and

TU
= 4-35

0-67 x 14

The breadth should be 4^ inches.

374. Example Depth. What should be the depth, in a

first-class store, of spruce beams, of average quality, 4 inches

thick and 16 feet long, and placed 14 inches from centres?

In this case, we have c i|, / = 16, k = 0-81 and

b = 4. Therefore, by formula (153*)

d =
0-81x4

or a depth of I if inches.

375. Headers and Trimmers. In Chap. VII., in Arts.

143 to 158, rules for headers and trimmers, based upon the

resistance of the material to rupture, are given. These rules
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contain the symbol a, which represents the number of times

the weight to be carried is contained in the breaking weight.

The value of this symbol may be assigned at any quantity

not less than that which is given for it in Table XX., and,

when made so great that the deflection shall not exceed 0-03

of an inch per foot of the length, the rules referred to will be

proper for use for headers and trimmers for the floors of

dwellings and assembly rooms.

376. Strength and Stiffness Relation of Formulas.

The value of a, the symbol for safety, may be determined

from the following considerations :

Taking formula (113.), which is

"
bd'd

and substituting G for W we have

Gl3 = Fbd 3S

A comparison of the constants for rupture (B) and for

elasticity (F) shows that

pB : F : : I : m = -^

or Bm = F

and putting rl equal to d we have, by substitution,

Gl 3 = Bmbd'rl

Gl 2 = Bmbd'r

dmr
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We have by formula (10.), Art. 36,

Wl
*w

or Wl = Bbd 2

Comparing this value of Bbd* with that above, we have

Gl a

Wl =
dmr

In this formula, G is the weight which may be carried by
the beam, with a deflection per foot of the length equal to r;

and W is the breaking weight. Putting these symbols in a

proportion, we have

W
G-. W:: i :a=^rG

or Ga = W
Substitute for W this value of it, and we obtain

r j
Gr

Gal = -jdmr

I

-j ~
dmr F

d-B r

377. Strength and Stiffkiess Value of <i, in Terms of B
and F. The values of B and F (form. 154-} are found in

Table XX., and r = 0-03. The ratio -7- ( / in feet and d

in inches) cannot be exactly determined until the length and

depth have been established. An approximation may be
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assumed, however, for a preliminary calculation, and then,

if found to err materially, it may be taken more nearly cor-

rect in a final calculation. In all ordinary cases, the ratio

-T- will be found nearly equal to | = i -

7. Taking this value

in formula (IS4-) we have

378. Example. Let us apply this in the use of formula

.), namely :

Wai = Bbd*

What weight may be carried at the middle of a Georgia

pine beam of average quality, 3 x 10 inches x 17 feet, so as

to deflect it no more than would be proper for the floors of

a dwelling?

Here =
3, d= 10, a -

^ , ^=5900 and I = 17 ;

therefore

B x 3 x io
2

_ 5900 x 3 x io
a

yy - -

jjr
17

i 770000

379. Tet of the Rule. To test the accuracy of the

result just found, the same problem may be solved by

formula (113.),

W>_F
''~~bd

3d

from which we have, when <? =rl, and substituting G for

W>
Gl* = Fbd sr

_ Fbd'r
and 6-

j-2
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In this expression, in the above example, F = 5900, b = 3,

d= 10, 1=17 and r = 0-03 ;
and hence

t

5900 x 3 x 10
s
x 0-03 531000"" ~~ =l837 ' 4

380. Rules for Strength and Stiffne Resolvable.

The result in the last article is the same as the one before

found, and indeed could not be otherwise, since the one

formula is derived directly from the other, and is readily

resolvable into it
;
for if, in formula (21.),

Wai = Bbd 2

we substitute for a its equivalent as in formula (154*), we

have

Fdr

Wl* = Fbd'r

so that instead of computing the value of a for use in any

particular case by formula (155.), we may introduce into the

rule its value as given by (154), and reduce to the lowest

terms, as in the next article.

381. Rule for the Breadth of a Header. A rule for a

header is given in formula (27 .\ Art. 145. Substituting for

a its value as in (154), we have, taking ^U instead of J/, Art.

340,

In this expression, / and g are the same, both represent-

ing the length of the header, and the (d\) is put for the
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effective depth, and is equal to the d of the first member;

therefore, reducing, we have

which is a rule for the breadth of a header, based upon the

resistance to flexure.

382. Example of a Header for a Dwelling. In a

dwelling having spruce floor beams of an average quality,

10 inches deep : What would be the required breadth of a

header of the same material, 10 feet long, carrying tail

beams 12 feet long?

The values of the symbols are, f= 90 (Art. 115), n = 12,

=10, ^=3500 (Table XX.), r = 0.03 and d=io\ and

, 5 xgox 12 x io
5

b = ? 9
= 4-409

16x3500x0-03 XQ

or the required breadth is 4| inches full.

383. Example of a Header in a Firt-clas Store. In a

first-class store, where the beams are 14 inches deep, what

is the required breadth of a header of Georgia pine of aver-

age quality, 16 feet long, and carrying tail beams 17 feet

long ?

Here /= 275, r = 0-04 (Art. 368), n = 17, g 16,

F = 5900 (Table XX.) and </= 14; and by formula (156.\

, 5x275x17x16"b = ~~- -'--3= II'54I16 x 5900 xo-O4x i3
3

The breadth should be 1 1| inches full.
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384. Carriage Beam with One Header. (See Art.

389.) In Art. ISO a rule (form. 29.) is given for this case,

based upon the resistance of the material to rupture. As

with a header (Art. 381), so here, the rule given may be

resolved into one depending upon the resistance to

deflection.

Taking formula (29.), and for a substituting its value as

per formula (154-), we have, taking / instead of /, Art. 340,

)
= Fbd*r (157.)

which is the required rule.

385. Carriage Beam with one Header, for I>welling.

In this rule, putting f= 90 and r = 0-03, we obtain

3000 (bcl*+gn*m) = Fbd*

which is a rule for carriage beams with one header, in

dwellings and assembly rooms. (See Art. 389.)

386. Example. What should be the breadth, in a

dwelling, of a carriage beam of average quality white pine,

20 feet long by 12 inches deep, and carrying a header 16

feet long at a point 5 feet from one end ? The floor beams

among which this carriage beam is placed are set at 16

inches from centres.

Here c i^, / 20, g = 16, n = 15, m 5, F = 2900

and d = 12
;
and by formula (158.)

b = ^
2900 X I2

8

The breadth should be 12} inches.
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387. Carriage Beam with One Header, for First-class

Stores. If in formula (157.) we take the value of / equal

to 275, and of r equal to 0-04, we shall then have

6875 (ficl*+gn
%

m) = Fbd*

which is the required rule (see Art. 389).

388. ExampDc. Of what breadth, in a first-class store,

should be a Georgia pine carriage beam of average quality,

25 feet long, and carrying at 6 feet from one end a header

16 feet long; the floor beams being 15 inches deep, and

placed 15 inches from centres?

Here c = ij, / = 25, g 16, n 19, m = 6, d = 15

and F = 5900 ;
and formula (159.) becomes

6875 [(A x i} x 25
3

) + (16 x iQ
2 x 6)]/ J LMT -2-/j _

5900 X i$
3

or the breadth required is 14^ inches.

389. Carriage Beam with One Header, for Dwellings-

More Precise Rule. The rules above given (157., 158,

and 159.) are not strictly correct : they give a slight excess

of material (see Art. 241).

The rule shown in formula (86.), taking f /",
Art. 340,

is accurate* and should be the one employed in special cases

*
Except when h is less than n {Art. 240). In this case the result is

slightly in excess, but so slightly that the difference is unimportant.
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in which a costly material is used. Substituting for a in

this formula, its value, as in formula (154>), we have

Bl mn .

A' + f U) = Fbd*r (160.)

in which A' is the concentrated load, and U the uniform-

ly distributed load. Formula (160.) may be modified, in the

case of a carriage beam, by using for these symbols their

values, thus:

From Arts. 92 and 150, A' = fng, and U=$cfl, and

hence

fmn (ng + %cl) = Fbd*r (161.)

which is a more precise general rule for a carriage beam

carrying one header.

If, now, we put f equal to 90, and r equal to 0-03,

we shall have

yxx>mn (ng 4- \cl) Fbd*

, yxxmn (ng + frZ)

Fd*

which is a more precise rule for carriage beams with one

header, in floors of dwellings and assembly rooms.

390. Example. Taking the example given in Art. 386,

we have m = 5, =I5, = 16, r = ij, / = 20, ^=2900
and d = 12

; and, in formula (162.)

= I2>

2900 X I2
3

showing that by this, the more exact rule, the breadth

should be \2\ inches, while by the former rule it was deter-

mined to be I2j inches.
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391. Carriage Beam witli one Header, for First-class

Stores More Precise Rule. Modifying formula (161.), by

putting 275 for /", and 0-04 for r, we have

6875*** (rig + Id) = Fbd*

Fd" (1631

which is the more precise rule required.

392. Example. Applying this rule to the example

given in Art. 388, we find, m 6, n 19, g 16, c ij,

I 25, F 5900 and d = 15 ;
and hence

^6875 x6x 19(19 x i6 + f x ijx 25) _
5900 x I5

3

giving the breadth, by this more precise rule, at 13^ inches.

This is nearly half an inch less than by the former rule,

which gave for the breadth, 14-073, or 14^ inches nearly.

393. Carriage Beam with Two Headers and Two Sets

of Tail Beams, for Dwelling*, etc. Formula (32.) in Art. 155

gives the relations of the symbols referring to a case in

which a carriage beam has to carry two headers, with two

sets of tail beams. From this formula we have, taking f U,

Art. 340,

b TrWVfi

If in this equation the value of a, as in formula (154-),

be substituted, there results

which is a general rule for these cases.
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Putting/ =90 and r o-o^, we have

b = ~? \_grn (mn + s
2

) + TV/
8

] (165.)

which is a rule for a carriage beam, carrying two headers,

with two sets of tail beams, in the floor of a dwelling or

assembly room. (See Arts. 402, 405, 415 and 417.)

394. Example. Under rule (165.) take the example

given in Art. 156, in which F = 5900, ^=14, g =. 12,

c = i-J- and /=25. For m and s there are given 5 and

15, and taking m as the larger, m =15, n = 10, s = 5

and r = 20
;
so that (165.) becomes

or the breadth should be j\ inches.

395. Carriage Beam with Two Headers and Two Sets

of Tail Beams, for First-elass Stores. If, in formula (164),

f be put at 275 and r at 0-04, we shall have

6875

which is a rule for a carriage beam carrying two headers,

with two sets of tail beams, in a first-class store (see Arts.

402, 407 and 4(7).

396. Example. Referring to the same example (Art.

156) we have F = 5900, d 14, g=. 12, m 15, n = 10,

s = 5, c = i and / = 25 ;
and the formula is

b =
5QOx

5

i4
3 [

12 x I5 (I5 x 1Q + 5
2

) + TVx H x 2 5
3

]
= 16-486

or the breadth should be i6 inches.
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397. Carriage Beam with Two Headers and One Set

of Tail Beams. Formula ($4-), in Art. 157, is a rule for a

carriage beam with two headers, carrying but one set of tail

beams. Substituting, in this formula, for a its value

/?/

(form. 154.) -- ,
we have, taking U, Art. 340,

from which

which is a general rule for a carriage beam carrying two

headers, with but one set of tail beams, with a given rate of

deflection. (See Arts. 402, 409, 411, 419 and 421.)

398. Carriage Beam with .Two Headers and One Set

of Tail Beams, for Dwellings. If, in formula (167.), f be

put at 90 and r at 0-03, we shall have

b = {Jgm (n+s) + fcl*] (168.)

a rule for a carriage beam with two headers, carrying only

one set of tail beams, in a dwelling or assembly room. (See

Arts. 402, 409, 411, 419 and 421.)

399. Example. Let it be required to find, under this

rule, the breadth of a carnage beam 20 feet long, of spruce

of average quality ;
said beam carrying two headers, each

12 feet long, with tail beams 11 feet long between them,

leaving an opening 4 feet wide on one side, and another

5 feet wide on the other side. The beams among which

this carriage beam is placed are 12 inches deep and 16

inches from centres.
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For the symbols we have, ^=3500, d = 12, jii,
g\2, c = 1% and / = 20. Having for m and s the

values 4 and 5, we make m equal to the larger one, and

therefore m = 5, n 15 and s 4. These values substi-

tuted in formula (168.) produce

_ 3000 [i i x 12 x 5 (i 5 + 4) +A x ij x 2Q3

]

3500 XI2
3

- 7
'8;4

The breadth should be, say 7^ inches.

400. Carriage Beam with Two Headers and One Set

of Tail Beams, for First-class Stores. If, in formula (167.),

we put 275 for / and 0-04 for r, we shall have

(169.)

which is a rule for carriage beams carrying two headers,

with one set of tail beams between them, in a first-class store.

(See Arts. 4-02, 409 and 413.)

401._Example. What should be the breadth, under

this rule, of a carriage beam of average quality Georgia

pine, 25 feet long, with two headers each 20 feet long,

carrying tail beams 10 feet long between them ? The tail

beams are so located that there is an opening 10 feet wide

at the left-hand end, and one 5 feet wide at the right-hand

end. The tier of beams is 15 inches deep and placed 15

inches from centres.

Here F= 5900, d = i$, j = 10, g = 20, ci\ and

12$. For the values of m and s we have 10 and 5;

and 10 being the larger it follows that m= 10, n 15

and s = 5 ;
and by formula (169.),

= Ii; lg
5900 x 1 5

8

or the breadth should be 15! inches.
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4-02. Carriage Beam with Two Headers and Two
Sets of Tail Beams More Precise Rules. The rules for

carriage beams given in Arts. 393 to 401 are drawn from

formulas which arc but close approximations to the truth.

The resulting dimensions are always in excess slightly of the

true amounts, and the rules therefore are safe.

The rule embodied in formula (92.), however, is deduced

from exact premises, and its results are precise.

If for a its value (form. 1>4*) b.e substituted in formula

(92.), we shall have, taking f C7, Art. 340,

(170.)

and, as auxiliary thereto,

-~(rs +

When h is equal to or exceeds n, then n is to be

substituted for h, and the portion

of formula (170.) equals a' (see Art. 248), and the formula
itself reduces to
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Substituting for a' its value (form. 171.) we have

b = -

We have here, in formula (170.), a general rule, and in

formula (174-), a rule, general when h equals or exceeds

n, for a carriage beam carrying two headers, with two sets

of tail beams, with a given deflection.

403. Example/*, les than n. Let it be shown, under

these rules, what should be the breadth of a carriage beam

of spruce of average quality, 20 feet long and 12 inches

deep, carrying two headers each 12 feet long, so placed as

to leave an opening 41 feet wide ; said opening being 7^

feet distant from one wall and 8 feet from the other.

The floor is to carry 100 pounds per superficial foot,

with a deflection of 0-03 per foot, and the beams are placed

15 inches from centres.

Here we have /= 100, g= 12, m 8, ! = 20, n 12,

s=7h r=\2^ y *=ii, d' = l-(m+s) = 20 (8 + ;) =
20 I5i 4j, ^=3500 and d= 12.

Preliminary to finding the value of h we have to deter-

mine the values of a' and b' .

By formulas (171.) and (172.)

ICO X 12 X 8
a '

''

4x20 (8xI2 + 7'5
3

) =18270

ICO X 12 X 7-5
b'-~

4x20,

-("-S* 7-5 + )= 17746-875

a' b' = 523-125
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From these and formula (173.} we have

So h = 11-49, an<3 since it is less than n (as n equals 12)

is therefore to be retained ;
and we have (form. 170.)

-

fV x i^x 100 x n -49x8- 51 + 17746 -875 +
* ^ O * O^ L3500 X I2 J

523.125 :~\

^y^X(!I. 49-7. 5)J =9.714

or the required breadth is 9f inches.

404. Example h greater than n. What should be

the breadth of a white pine carriage beam 20 feet long, 12

inches deep, and carrying two headers 10 feet long one

located at 9 feet from one wall and the other at 6 feet from

the other wall
;
the floor to carry 100 pounds per foot super-

ficial, with a deflection of 0-03 of an inch per foot lineal,

and the beams to be placed 15 inches from centres ?

Here /= 100, F 2900, d 12, r = 0-03, c
i-J,

1=20 and -=10. Comparing m and s we have m = 9,

n = 1 1 and s = 6.

Proceeding as in the last article, we find that h exceeds

n, therefore, according to Art. 402, we have formula (174>)

appropriate to this case
;
from which

* =
2900x^x0.03 [(** i*x it xao) + io(9 x u+6*)] = 10-140

or the breadth should be loj inches.
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405. Carriage Beam with Two Headers and Two Sets

of Tail Beams, for Dwellings More Precise Rule. If, in

formula (174>), f= 90 and r = 0-03, we shall have

which is a precise rule for carriage beams carrying two

headers, with two cets of tail beams, in dwellings and assem-

bly rooms. (See Arts. 393 and 402.)

406. Example. An example under this rule may be

had in that given in Art. 404
;
in which we have F= 2900,

d= 12, c = ij, / 20, ^=10, m = 9, n n and s = 6.

Then by formula (175.}

2
a Ki x r x J J x 20)4-10(9x11 +6

2

)]
= 9.126

or the breadth should be 9^ inches.

407, Carriage EScam with Two Headers and Two et

of Tail Beams, for First-class Stores More Precise Rule.

If, in formula (174.), f 275 and r = 0-04, we shall have

V J-, J Q

Fd*

which is a precise rule for carriage beams carrying two

headers, with two sets of tail beams, in first-class stores.

(See Arts. 395 and 402.)

408. Example. What should be the breadth, under

this rule, of a carriage beam of Georgia pine of average

quality, 23 feet long, 14 inches deep, carrying two headers

each 17 feet long, with tail beams on one side 7 feet long,

and on the other 10 feet long ;
the beams being placed 14

inches from centres ?
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Here ^=5900, d 14, c = i%> / = 23 and g\T.
Taking the larger of the two, 10 and 7, for ;, we have

m = 10, n = 13, and s = 7 ;
and by formula (176.)

14.

the breadth should be, say 14! inches.

= 14-774

409. Carriage Beam with Two Headers and One Set

of Tail Beams More Precise Rule. In a case where there

are two openings in the floor, one at each wall, then the two

headers carry but one set of tail beams, and these are be-

tween the headers. The load at each header is the same ;

and when g equals the length of header, j the length of

tail beams, and / the load per superficial foot, then the

load at each end of each header is

W=\fgj

and the expression for the load at one point, as in Art. (53,

wi IVi'fz

-j-(Wn+Vs\ becomes
--j--(*'+ f),

and therefore (A rt. 243)

(177.)

and fi' = (r + w) (178.)
4/

In the case under consideration, these two expressions are

auxiliary to formula (170.), in the place of those given in for-

mulas (171.) and (172.), and with h equal to, or exceeding

n, formula (170.) becomes
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Substituting for a' its vajue, as in formula (177.) t
we have

(179.)

which is a precise rule for carriage beams carrying two

headers, with one set of tail beams, and with a given rate of

deflection. (See Arts. 397, 398 and 402.)

410. Example. What should be the breadth of a car-

riage beam of locust of average quality, 16 feet long and 8

inches deep, carrying two headers of 8 feet length, with

one set of tail beams 7 feet long between them, so placed as

to leave an opening of 6 feet width at one wall, and another

of 3 feet at the other? The floor beams are placed 15

inches from centres, and are to carry 90 pounds per

superficial foot, with a deflection of 0-04 of an inch per

foot lineal.

We have from this statement f = 90, m = 6, ;/ = 10,

/= 16, r = 13, 5=3, c= ij, F= 5050, d = 8, r
7 = 0-04,

g = 8 and j = 7.

To test the value of h we have, preliminary thereto,

formula (177.), which gives

oox 8 x 7x 6
a = 2- x 10 + 3 = 6142 5

and, formula (178.),

90x8x7x3 --
V

a'-V = 1653.75
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Then, by formula (173.),

As n = 10, h exceeds n. We must, therefore, substi-

tute n for h
;

and by formula (179.) we have

or the breadth should be 5J, say 5 inches.

4(1. Carriage Beam witli Two Header and One Set

of Tail Beams, for Dwellings lHore Precise Rule. If, in

formula (179.), f = 90 and r' = 0-03, we shall have

(180.)

which is a precise rule (in cases where h exceeds n ) for

carriage beams carrying two headers, with one set of tail

beams, in a dwelling or assembly room. (See Arts. 398,

402 and 409.)

4(2. Example. What should be the breadth, in a

dwelling, of a carriage beam of spruce of average quality,

1 8 feet long and 10 inches deep, carrying two headers of

12 feet length, with a set of tail beams between them 7 feet

long? The headers are placed so as to leave an opening of

8 feet on one side and 3 feet on the other, and the beams

are set 15 inches from centres.

Here / = 90, g 12, j = 7, m = 8, n 10, s = 3,

r = 15, / = 18, F = 3500, d 10, r' 0-03 and c = \\.
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Preliminary to seeking the value of h we find, by for

mulas (177.) and (178.\

, 90x12x7x8."
~-

= 7245

a'-b'= 3675

Now, by formula (173.),

But n= 10; therefore n is to be used in the place of 7z,

and formula (180.) is the proper one to use in this example.

This latter formula gives us

x8 ;

10x18) + (12x7x10 + 3)] =9- 417

Thus the breadth should be 9! inches
;

or the beam be

of x 10 inches.

4-13. Carriage Beam wittli Two Headers ancl One Set

of Tail Beams, for First-elass Stores More IPrecfse RuBc.

If, in formula (179.) t f 275 and r 0-04, we shall have

which is a precise rule, when h exceeds ?z, for a carriage

beam carrying two headers, with one set of tail beams, in a

first-class store. (See Arts. 400 and 402.)
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i

4-14. Example. The example given in Art. 412 may be

used to exemplify this rule, excepting the depth, which we

will put at 14 inches instead of 10.

Formulas (180.) and (181.) are alike, with the exception

of the numerical constant. The result found in Art. 4-12,

b = 9-417, multiplied and divided to correct the constant,

will give the result required in this case. The constant

6875 is to take the place of 3000, and the depth 14 is to

replace 10. With these changes, we have

6875 TOGO
b 9-417 x x - - = 7-865

3000 2744

or the breadth should be 7-86; say 7J inches.

415. Carriage Beam with Two Headers, Equiclituiit

from Centre, and Two Sets of Tail Bearn Precise Rule.

In case the opening in the floor be at the middle, leaving

tail beams of equal length on either side, then the moments

of the two concentrated loads upon the carriage beam are

equal, or a' = b' and, in formula (170.),

and the formula itself becomes

in which b' represents the combined effect of the two loads,

as acting at the location of either of them.

This effect is shown (Art. 153) to be
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In the case under consideration, W V and m = s, and

therefore

'= W~(n + m) = W-~ = Wm

Now, W represents the weight concentrated in one end of

one of the headers. The load on a header is %fgm, and

the load at one end of the header is \fgrn ; therefore

b' =

and formula (182.) becomes

*=Tfi

By formula (178.)

a'-b'

and since in this case a' b' = o

^lt and

and therefore

which is a precise rule for carriage beams carrying two

headers, equidistant from the centre, with two sets of tail

beams, and with a given rate of deflection. (See Arts. 393,

396 and 402.)

. Example. Under this rule, what should be the

breadth of a Georgia pine carriage beam of average quality,

20 feet long and 12 inches deep, to carry two headers each
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12 feet long ;
the headers so placed as to leave an opening

6 feet wide in the middle of the width of the floor ? The

floor beams are set 16 inches from centres, and are to carry

200 pounds per foot superficial, with a deflection of 0-04

of an inch per foot lineal.

l-d' 20-6
Here /=2O, m = = - = 7; ^=12, ^=12,

c = i^-, F== 5900, / 200 and ^ = 0-04; and by formula

(183.)

, 200 x 20 r/ .N ,....

* ;=

5900 x 12 x 0.04
* x H x 20') + (12 x 7')] = 7-402

or the breadth should be 7 inches.

417. Carriage Beams with Two Headers, Equidistant

from Centre, and Two Sets of Tail Beams, for Dwellings

and for First-class Stores Precise Rules. If, in formula

(183.), f= 90 and r = 0-03, we shall have

which is a precise rule for carriage beams carrying two

headers, equidistant from the centre, with two sets of tail

beams, in a dwelling or assembly room. (For an example,
see Art. 418.) But if, instead, /= 275 and ? = 0-04,

then we shall have

which is a precise rule for carriage beams carrying two

headers, equidistant from the centre, with two sets of tail

beams, in a first-class store. (See Arts., 393, 395 and 402.)
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4-! 8. Examples. Formulas (184.) and (185.) are alike,

except in the numerical coefficient. One example will

therefore suffice for an exemplification of the two. Let it be

required to show what, in a dwelling, should be the breadth

of a carriage beam, 20 feet long and 12 inches deep, of

average quality of spruce, carrying two headers 10 feet

long ;
these headers being so placed as to leave at the middle

of the width of the floor an opening 8 feet wide. The

beams are to be placed 16 inches from centres.

Here we have /= 20, ;;/ = 6, g =. 10, ^/= 12, c= i$

and F= 3500 ;
and by formula

i

)]
= 5-225

or the breadth should be, say $J inches.

For a first-class store this carnage beam, if of Georgia

pine, would be required to be 7- 103, say 7J inches

broad. This result is found by eliminating the two con-

stants 3000 and 3500 in the above and replacing them by

those required by the new conditions, namely, 6875 and

5900. Doing this, we find

6875 3500= 5-225 x- -x- -=7-1033 J
3000 5900

'

419. Carriage fleam with Two Header, Equidistant

from Centre, and One Set of Tail Beam Precise Rule.

In some cases the wells or openings are at the wall on each

side, and the tail beams at the middle of the floor. In this

arrangement, if / equals the length of the tail beams,

\fgj will equal the load at the end of one header.

By Art. 415, b' Wm, from which

V = Wm =



CARRIAGE BEAM WITH TWO HEADERS. 29!

and formula (182.) becomes

and since (Art. 415) h = t = I/, therefore

fckt =W
By substituting this in the above,

which is a precise rule for carriage beams, carrying two

headers, equidistant from the centre, with one set of tail

beams, the rate of deflection being given. (See Arts. 397,

398, 402, 409 and 411.)

420. Example. What should be the breadth of a car-

riage beam of hemlock of average quality, 16 feet long and

ii inches deep, carrying two headers, each 10 feet long,

placed equidistant from the centre of the width of the floor,

and having between them one set of tail beams 6 feet long?

The floor beams, placed 1 5 inches from centres, are to carry

100 pounds per foot superficial, with a deflection of 0-035

of an inch per foot lineal.

Here we have /= 16, m = 5, g-= 10, j= 6, df= 11,

c i, F 2800, /= 100 and r= 0-035
' and by formula

(186.)

b =
28oox?i-x

1

o.035
[(A X '* X I6

'

)+ (
' x 6 x 5)]

= 4-907

or the breadth should be 4| inches.
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421. Carriage Beams \viili Two Headers, Equidistant

from Centre, and One Set of Tail Beams, for Dwellings and

for First-class Stores Precise Rules. If, in formula (186.),

f= 90 and r = 0-03, then we shall have

which is a precise rule for carriage beams, carrying two

headers, with one set of tail beams between them, at the

middle of the floor, in a dwelling or assembly room.

For an example, see Art, 4-22.

But if, instead of these, /= 275 and r 0.04, we

shall have

which is a precise rule for carriage beams, carrying two

headers, with one set of tail beams between them, at the

middle of the floor, in a first-class store.

422. Example. Formulas (187.) and (188.) are alike,

except in the numerical coefficient. One example will

suffice to show the application of both.

Take one coming under formula (187.), and in which

/ = 20, m = 6, g 10, j =8, d 12, =! and

JF=.$$oo. Then, by the formula,

= 6-415

or the breadth should be 6 inches full.

423. Beam with Uniformly Distributed and Three Con-

centrated Loads, the Greatest Strain being Outside. In

Art. 256, formula (96.) is a general rule for this case, but
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based upon the resistance to rupture. This rule may be

modified so that it shall be based upon the resistance to

flexure. To this end let a, in formula (96.), be substituted

/?/

by its value in formula (154-), r~> and we have, taking

(189.)

which is a rule, based upon the resistance to flexure, for a

beam uniformly loaded, and also carrying three concentrated

loads, the largest of which is not between the other two.

424. Example. What ought to be the breadth of a

beam of Georgia pine of average quality, 20 feet long and

12 inches deep, carrying an equally distributed load of 4000

pounds, together with three concentrated loads, namely, 7000

pounds at 7 feet from the right-hand end, 4000 pounds at

7 feet from the left-hand end, and 3000 pounds at 3 feet

from the same end. (See Art. 264.) Allotting the symbols to

accord with the arrangement required under rule (189.), (the

largest strain, as in Fig. 55, not between the other two), we
have U 4000, A' = 7000, B' = 4000, O = 3000, /= 20,

m = j, n=i$, s=7, z> = 3, d= 12 and /**= 5900, and let

r = 0-04 ;
and by formula (189.)

b =
5900 x

4
i2'

7

x 0-04
[( x 4000 x 13) + (7000 x 13) + (4000 x 7) +.

(3000X3)] = 11-020

or the breadth should be 1 1 inches.
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425. Carriage Beam with Three Headers, the Greatest

Strain being at Outside Header. If, in formula (97.), (Art.

JR7

258), we substitute for a its value, ~
(form. 154.), we

shall have, taking Z7, Art. 340

, _ mf r 5 / / g_ >yi (2QQ \

ZTV/^/** L4 ' 6 \ /_J \ /

which is a rule, based upon the resistance to flexure, for car-

riage beams carrying three headers, with two sets of tail

beams, so located (as in Figs. 54 and 55) that the header at

which there is the greatest strain shall not be between the

other two headers.

426. Example. What should be the breadth of a car-

riage beam of Georgia pine of average quality, 20 feet long

and 12 inches deep, carrying three headers 15 feet long,

two of them, for a light-well 6 feet wide, located centrally

as to the width of the floor, and the third header, at the side

of an opening for a stairway 3 feet wide at one of the

walls? The floor beams, placed 15 inches from centres, are

to carry 200 pounds per superficial foot, with a deflection

of 0-04 of an inch per foot lineal. (See Art. 264.)

Allotting the symbols as in Fig. 55, we have / = 20,

*=7, =i3, * = 7, v = 3i
= J 5> </=i2, r=ii,

F 5900, f= 200 and r = 0-04 ;
and by formula (190.) we

have

X 2OO

or the breadth should be 8i inches.
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427. Carriage Beam with Three Headers, the Greatest

Strain being at Outside Header, for Dwellings. If, in for-

mula (190), f go and r= 0-03, we shall have

which is a rule, based upon the resistance to flexure, for car-

riage beams in dwellings and assembly rooms, to carry

three headers, with two sets of tail beams, so located that

(as in Fig. 55) the header at which there is the greatest strain

shall not be between the other two,

For an example, see Art. 429.

428. Carriage Beam with Three Headers, the Greatest

Strain being at Outside Header, for First-elass Stores. If,

in formula (190.), f 275 and r = 0-04, we shall have

(192.)

which is a rule, based upon the resistance to flexure, for car-

riage beams in first-class stores, to carry three headers, with

two sets of tail beams, so located that (as in Fig. 55) the

header at which there is the greatest strain shall not be

located between the other two.

429. Examples. Formulas (191.) and (192) are alike,

except in the numerical coefficient, which, in the rule for

dwellings and assembly rooms, is 3000, while for first-class

stores it is 6875. An example under one rule will serve to

illustrate the other, by a simple substitution of the proper

coefficient.

As an example under rule (191) : What should be the
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breadth, in a dwelling, of a carriage beam of white pine of

average quality, 20 feet long and 12 inches deep, carrying

three headers 12 feet long, so placed as to provide an open-

ing 4 feet wide for a stairs at one wall, and a light-well 6

feet wide at the middle of the width of the floor? The

floor beams are placed 16 inches from centres. (See Art.

264.)

Allotting the symbols as in Fig. 55 we have / = 20, m 7,

n = 13, s= 7, v = 4, -12, d = 12, c = ij and .F= 2900;

and by formula (191.)

b = -^v*,v Ki x i^ x 13 x 20)+ 12 (7^13 + 7
3

-4')] = 8-052
2QOO X 1 ^

or the breadth should be 8 inches.

This is the breadth when of white pine, and in a dwelling.

If, instead, it be required of Georgia pine, and for a first-

class store, then the breadth just obtained, treated by the

proper constant and numerical coefficient, and at the same

time relieved from those applying to the previous case,

will be

6875 200O
b 8-CX2 x x - - = 0-070

3000 5900

or the breadth, when of Georgia pine, and for a first-class

store, should be 9^ inches.

4-30. Beam* with Uniformly Distributed and Three

Concentrated Loads, the Greatest Strain being at middle

Load. In Art. 262 a rule is given for beams uniformly

loaded, and also carrying three concentrated loads, the mid-

dle one of which produces the greatest strain. This rule is

based upon the resistance to rupture. It may be modified to
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depend upon the resistance to flexure by substituting, in for-

/?/
mula (99.), for a its value -=j- (form. 1&4-), (taking | U, Art.

340), thus

(193.)

which is a rule, based upon resistance to flexure, for beams

carrying a uniform load (U) and three concentrated loads

(A, B' and C), the middle one of which produces the

greatest strain of the three, as in Fig. 56.

431. Example. What should be the breadth of a beam

of Georgia pine of average quality, 20 feet long and 14

inches deep, and carrying 4000 pounds uniformly distrib-

uted, 6000 pounds at 4 feet from one end, 6000 pounds at

9 feet from the same end, and 7000 pounds at 6 feet from

the other end ;
with a deflection of 0-04 of an inch per lineal

foot? (See Art. 264.)

Assigning the symbols as per figure, we have, 7= 4000,

A = 6000, B' = 7000, C = 6000, 1=20, m = 9, =n,
s = 6, v = 4, */= 14, F = 5900 and r = 0-04 ;

and by for-

mula (193.\

(6000 x 1 1 x 4)]
=

9- 163

or the breadth should be 9^ inches.

432. Carriage Beam with Three Headers the Oreatet

Strain being at Middle Header. If, in formula (106.), (Art.

/?/

267), there be substituted for a its value -
(form.

we shall have, taking f 7, Art. 340,

b = ~ m
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which is a rule, based upon resistance to flexure, for carriage
beams carrying three headers and two sets of tail beams,
so placed (as in Fig. 56) that of the strains produced at the

headers, the greatest shall be at the header which is between

the other two.

4-33. Example. What should be the breadth of a car-

riage beam, 20 feet long and 12 inches deep, of Georgia

pine of average quality, carrying three headers 14 feet long,

so placed as to provide a stair opening 4 feet wide at one

wall, and a light-well 5 feet wide 6 feet from the other

wall ? The floor beams, placed 15 inches from centres, are

to carry 200 pounds per foot superficial, with a deflection

of 0-04 of an inch per foot lineal. (See Art. 264.)

Assigning the symbols as per Fig. 56 we have, / = 20,

m =
9, n = 1 1, s = 6, v = 4, g = 14, d = 12, <?,== if,

F = 5900, f= 200 and r = 0-04; and by formula

2OO _ _
=
S900xi2'xo.o4

L9(* XI* x 11 x 20 + 14 x 6') -.-

(14 x ii xy' 4
2

)] = 8-651

or the breadth should be, say 8g inches.

434. C?arr5age CScaiai with Three Headers, the Greatest

Strain being at Middle Header, for Dwellings. If, in for-

mula (194-), f= 90 and r 0-03, we shall have

b = {,m(lcnl+gs^+gn (m*-v*)] (195.)

which is a rule, based on resistance to flexure, for carriage

beams in dwellings and assembly rooms, to carry three

headers, with two sets of tail beams relatively placed as in

Fig. 56, so that, of the three strains produced at the headers,

the greatest shall be at the header which is between the

other two. (For an example, see Art. 436.)
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4-35. Carriage Beam with Three Headers, the Greatest

Strain being at middle Header, for First-class Stores. If,

in formula (194*), f= 275 and r 0-04, then we shall

have

b = \m (Icnl+gs*} +gn K-tf)] (196.)

which is a rule, based on resistance to flexure, for carriage

beams in first-class stores, to carry three headers, with two

sets of tail beams relatively placed as in Fig. 56, so that, of

the three strains produced at the headers, the greatest shall

be at the header which is between the other two.

4-36. Example. Formulas (193.) and (106.) being alike,

except in the numerical coefficient, a single example will

suffice to illustrate them.

In a dwelling, what should be the breadth of a carriage

beam of oak of average quality, 20 feet long and 12 inches

deep, to carry three headers 15 feet long, with two sets of

tail beams, so placed as to provide a stair opening 4 feet

wide at one wall, and a light-well 7 feet wide, distant 5

feet from the other wall ? The beams are to be placed 1 5

inches from centres. (See Art. 264.)

Arranging the symbols in the order in which they appear
in Fig. 56, we have, / = 20, m = 8, n = 12, s = 5, v = 4,

=15, d = 12, c= i and F 3100; and, by formula

or the breadth should be, say 8J inches.
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QUESTIONS FOR PRACTICE.

437. In a dwelling: What should be the depth of white

pine beams of average quality; they being 18 feet long and

3 inches broad, placed 18 inches from centres, and allow-

ed to deflect 0-03 of an inch per foot?

438. In a first-class store : What should be the breadth

of the floor beams of spruce of average quality, 19 feet

long, 13 inches deep, placed 13 inches from centres, and

with a deflection of 0-04 of an inch per foot ?

439. In a dwelling: What ought to be the breadth of a

header of white pine of average quality, 14 feet long and

13 inches deep, carrying one end of a set of tail beams 15

feet long, and with a rate of deflection of 0-03 of an inch

per foot ?

440. In the floor of an assembly room, in which the

beams are 15 inches from centres: What should be the

breadth of a carriage beam of spruce of average quality,

20 feet long and 12 inches deep, carrying one header 13

feet long, located at 5 feet from open end ? The deflection

allowable is 0-03 of an inch per foot.

441. In the floor of a first-class store, where the beams

are 15 inches deep and set 14 inches from centres : What

should be the breadth of a carnage beam 24 feet long,

of Georgia pine of average quality, carrying two headers
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1 6 feet long, located, one at 9 feet from one end, and the

other at 7 feet from the other end, with two sets of tail

beams? The deflection is 0-04 of an inch per foot.

4-4-2. In the floor of a first-class store, with beams 16

inches deep placed 15 inches from centres : What should be

the breadth of a carriage beam of Georgia pine of average

quality, 26 feet long, and carrying three headers 18 feet

long, located as in Fig. 54, one at 4 feet from one wall,

another at 8 feet from the same wall, and the third at 8

feet from the other wall ? The deflection to be 0-04 of an

inch per foot.



CHAPTER XVIII.

BRIDGING FLOOR BEAMS.*

ART. 443. Bridging Defined. Bridging is a system of

bracing floor beams. Small struts are cut to fit between

each pair of beams, and secured by nails or spikes ;
as

shown in Fig. 65. The effect of this bracing is decidedly

FIG. 65.

beneficial in sustaining any concentrated weight upon a floor.

The beam immediately beneath the weight is materially as-

* The principles upon which this chapter is based the author first made

public in an article which appeared in the Scientific American, July a6th, 1873,

entitled "On Girders and Floor Beams The Effect of Bridging."
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sisted, through these braces, by the beams on each side of it.

It is customary to insert rows of cross-bridging at every five

to eight feet in the length of the beams.

It is the usual practice, where the ceiling of a room is

plastered, to attach the plastering laths to cross-furring, or

narrow strips of boards crossing the beams at right angles,

and nailed to their bottom edge. These strips are set at,

say 12 inches from centres, and when firmly nailed to the

beams act as a tie to sustain the lateral thrust of the bridg-

ing struts. The floor plank at the top serve a like purpose.

. Experimental Test. To test the effect of bridging,

about three years since I constructed a model, and sub-

jected it to pressure. It was made upon a scale of 1% inches

to the foot, or \ of full size, and represented a floor of seven

beams placed 16 inches from centres, each beam being

3 x 10 inches and 14! feet long. These beams were con-

nected by two rows of cross-bridging, and secured against

lateral movement by strips representing floor plank and ceil-

ing boards, which were nailed on top and beneath. There

were four strips at each row of bridging, two above and two
below.

Before putting these beams in position in the model, I

submitted each beam to a separate test, and ascertained that

to deflect it one tenth of an inch required from 37 to 40

pounds, or on the average 38^ pounds.
With the model completed, the beams being bridged, it

required a pressure of 1554 pounds applied at the centre of

the middle beam to deflect it as before, one tenth of an inch.

And while this pressure deflected the central beam to this

extent, the beam next adjoining on each side was deflected

0-0808 of an inch, the ones next adjoining these were each

deflected 0-0617 of an inch, while the two outside beams
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were each depressed 0-0425 of an inch. Had there been

more than seven beams, and all bridged together, the effect

would doubtless have been still better.

As the result of this test of the effect of bridging, we have

one beam sustaining 155! pounds with the same deflection

that was produced by 38^ pounds before bridging, or an in-

crease of H7TV pounds; an addition of more than three

times the amount borne by the unbridged beam.

445. Bridging Principle of Resistance. The assist-

ance contributed by the adjacent beams to a beam under

pressure may be computed, but preliminary thereto we have

these considerations, namely :

First. The deflections of a beam are (within the limits

of elasticity) in proportion to the weights producing the de-

flections. Thus, if one hundred pounds deflect a beam one

tenth of an inch, two hundred pounds will deflect it two

tenths of an inch. From which, knowing the deflection of a

beam, we can compute the resistance it offers.

Second. The resistance thus offered, being at a distance

from the beam suffering the direct pressure, is not so effect-

ual as it would be were it in direct opposition to the pres-

sure. It is diminished in proportion to its distance from

that beam.

446. Resistance of a Bridged Beam. Based upon the

two preceding considerations, we will construct a rule by
which to measure the increase of resistance derived from

the adjacent beams through their connection by cross-

bridging.

Let Fig. 66 represent the cross-section of a tier of floor
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beams connected by cross-bridging, in which C is the lo-

cation of a concentrated weight, AB the distance on one

side of the weight to which the deflecting influence acting

FIG. 66.

through the cross-bridging is extended, BC the deflection

at the weight, and DE the deflection of one of the beams

E, caused by the weight at C. The triangles ABC and

ADE are similar, and tkeir sides are in proportion. Put-

ting

DE,

p for AB,
we have

AB

P

m for AD, a' for BC, and V for

BC : : AD : DE

= ?
This is the measure of the deflection at E, or at any one of

the beams the distance of which from A is equal to m,

and, since the deflections are as the weights producing

them, therefore b ', the deflection at E, measures the

strain there, when a' measures that at C.

It is required, however, to know not only the resistance

offered by each beam, but also what weight r, acting at

C, would be required to overcome this resistance. The
line AB (or /) may be considered to serve as a lever, hav-

ing its fulcrum at A. The weight r, at B, acting in

the line BC, is opposed at D by b'
'

,
the resistance of

the beam at E, acting in the line ED, with the leverage
m. The weight r will act with the moment rp, and I'

will resist with the moment b'm. Putting these moments

in equilibrium, we have b'm rp, or r = b'.
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In this, substituting for b' its value as above found, we

have

,m m
r = a x

P P

This weight r represents the effect at C of the resist-

ance to deflection of any beam whose distance from A is

equal to m, and where a' equals the load borne by the

beam at B, and / is put for the distance AB.

44-7. Summing tlie Resistances. Let the distance from

centres between the floor beams be represented by c, and

the number of spaces from A to any beam, as, for example,

that at D, by n
;
then m = nc

t
and substituting this value

for m in (197.) we have

r = n*~ (198.)

In this expression, a', c* and p
3 are constants, or quanti-

ties which remain constant for the several values of r

which are to be obtained from the resistances of the several

beam?. For convenience, put / for j and then

r = vtt (199.)

With this expression, the various values of r may be ob-

tained and grouped together. In doing this, we have, for

the first beam from A, n = i
;

for the second, n = 2; for
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the third, n 3, and so on to the middle or point of great-

est depression. Therefore the whole resistance will be

R' = t + 2V + 3V + 4V + etc.

R' t (i + 4 + 9 + 16 + etc.)

This gives the resistance on one side of the point C. The

beams on the other side afford a like resistance ;
and the

sum of the two resistances will be

R = 2t (i + 4 + 9 + 16 + etc.)

R = 2 T- (i + 4 + 9 + 16 + etc.)

448. Example. When a concentrated weight deflects

six beams on each side of it, they being placed 16 inches

from centres : What will be the amount of resistance to de-

flection offered by the twelve beams, the beam upon which

the weight rests being capable of sustaining alone, unaided

by the adjoining beams, 1000 pounds ?

Here a' = 1000, c = i% and p = ?xi$ = 9^. There-

fore, by formula (200.},

2 X IOOO X = 37H-3

This 3714 pounds is the resistance offered by the twelve

beams, through the means of bridging, and is nearly four

times the amount that the centre beam, unaided by the

bridging, would carry with a like deflection. The combined

resistance of all the beams would be 3714+1000 = 4714

pounds.
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44-9- Assistance Derived from Cross-bridging. Just

how many beams on each side will be affected, and by their

resistance contribute in aiding the beam at 7, will depend

upon circumstances. The bridging will be effective in re-

sisting deflection in proportion to the elevation of the angle

at which the bridging pieces are placed, which will be

directly as the depth of the beams and inversely as their

distance apart. It will also be in proportion to the faithful-

ness with which the work of bridging is executed. From

these considerations, and from the experiment of Art. 44-4,

we conclude that, in well-executed work, we shall have

d

An equally distributed load upon a floor beam is represented

(Art. 92) by cfl. A load at the centre of the beam produc-

ing an equal effect will be f of this, or \cfl. The symbol
a' (form. 200.) represents the load at the middle of a floor

beam, and therefore

a' = fc/7

These values of / and a' may be substituted for these

symbols in formula (00.\ and the result will be

R= 2 -TT-j (i + 4 + 9 + etc.) or,

(901..

In this rule R equals the additional resistance to a concen-

trated weight on a beam, obtained from adjacent beams

through the cross-bridging.
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450. Xumfoer of Beams Affording Assistance. The

value of /, as above, is -. The symbol -n being put for

the number of spaces on each side of the beam sustaining the

concentrated weight, over which this weight exerts an in-

fluence
;
or /, the distance AB of Fig. 66; and c for the

distance apart from centres at which the beams are placed ;

then, / = = nc
;
from which we have

n = % (02.)

To apply this rule : How many beams on each side of a

concentrated weight would contribute towards sustaining it,

when they are 12 inches deep, and 16 inches from centres?

Here we have d = 12 and c =
i-J-, and therefore

n = -p
= 6f say 7 spaces.

3

In seven spaces, six beams will be affected.

451. Bridging Useful in Sustaining Concentrated

Weights. The results shown in Art. 448 illustrate the ad-

vantage of cross-bridging in resisting concentrated weights,

and show the importance of always having floor beams

bridged, and the work faithfully executed. The advantage,

however, of cross-bridging inheres only in the case of concen-

trated weights. For, although in the example of Art. 44-8, the

13 beams sustained by their united resistance a concentrated

weight of 4714 pounds, yet it will be observed that this is

not the limit of their power, for they are each capable of

sustaining 1000 pounds placed at the middle, or together,

13,000 pounds; nearly three times the previous amount.
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4-52. I5icreaed Resistance Due to Bridging. A useful

application of the results of this investigation is found in

determining the amount of concentrated weight which may
be borne upon a floor beam. As an example : In a dwelling
with well-bridged floor beams of an average quality of

white pine, 3 x 10 inches, and 16 feet long, what concen-

trated weight may be safely sustained at the middle of one

of them ?

The distance from centres at which these beams should

be placed is had by formula (144-), Art. 362,

ibd 3
i -55

the value of i being taken as found in Art. 361.

With the above value, c 1-135, we may, by formula

(202.), find the distance to which the effect of the weight
extends on each side, thus :

io io

say 8 spaces, or 7 beams. The symbols of formula (20 l.\

applied in this case, will be as follows : c = i 135, / = 90,

/= 16 and d = io, and the squares in the parenthesis

extend to 7 places. Therefore

n 5xi- i35xgox 16
,R

4 x IQ^" -(1+4+9+16 + 254-36

= 18 x i-"i35~

ft

x 140
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The product of these factors, one of them being raised to

a high power, will best be obtained by logarithms, thus :

Log. 1-135 = 0-0549959

5

0-2749795

Log. 1 8 = 1-2552725

Log. 140 = 2-1461280

4746-6 = 3-6763800

The product of the factors, or the value of R, is there-

fore equal to 4746-6 pounds. This is the increased resist-

ance. The resistance offered by the beam upon which the

weight is laid equals (Art. 449)

To this, adding the increase = 4746-6

we have 5768- 1

as the total resistance to a concentrated load at the middle

of the beam, when assisted by 7 beams on each side by

cross-bridging.



CHAPTER XIX.

ROLLED-IRON BEAMS.

ART. 453. Iron a Substitute for Wood. When the

beams composing a floor are of wood, they are of rectangular

form in cross-section. Investigations into the philosophy of

the transverse strain, by which the importance of depth was

developed, led to the use of beams of which the rectangle

of cross-section was narrow and high. Owing to the liabil-

ity, in wooden beams as generally used, of destruction by

conflagration and by other causes, iron was introduced as

a substitute. The greater cost of this material over that

of wood, made it important, now more than ever, to give to

the beam that shape which should prove the strongest.

454. iron Beam Its Progressive Development. In

the use of iron as a floor beam, economical considerations

reduced the breadth until the

beam became weak laterally. To

remedy this defect, metal was

added at the top and bottom in

the form of horizontal plates,

and these were connected to the

thin vertical beam by angle irons

as in Fig. 67 ;
the whole forming

what is known as the plate beam

or girder. This expedient served
FlG - 67- not only to stiffen the thin

vertical beam laterally, but added very greatly to its ab-
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solute strength. The added material had been placed

just where it would do the greatest possible good ;
at a

point far removed from the neutral axis of the beam.

455. Rolled-Iron Beam Its Introduction. The in-

crease of strength obtained in the plate beam (Fig. 67) was so

great that it became popular. To supply the demand, iron

manufacturers, at great expense, made rolls similar to those

for making railroad iron, by which they were enabled to fur-

nish beams (Fig. 68) rolled out in one piece, with all the best

features of the plate beam, and which could be much more

readily and cheaply made. Owing to the

large cost of the rolls, only a very few

sizes were at first made, but these few

only increased the demand. The man-

ufacturer, thus encouraged, made rolls

for other sizes, and thus the number of

beams was increased, until now we

have them in great variety, from 4 to

15 inches high.*
FlG- 68 -

4-56. Proportions between Flanges and Web. These

beams, as usually made, have the top and bottom plates, or

flanges, of the same form and size. In wrought-iron the

resistances to rupture, by compression and by tension, are

not equal. When the load upon the beam, however, is not

so large as to strain the metal beyond the limits of elasticity,

* There were exhibited at the Centennial Exposition at Philadelphia, by the

Union Iron Co., of Buffalo, a 15 inch beam 52 feet in length, and a 9 inch

beam 80 feet long. This is believed to be the limit reached in American

manufacture at the present time. The English and Germans, however, are roll-

ing them larger. A German exhibit in Machinery Hall contained beams from

Burbach half a metre (19-69 inches) high by 15 metres (49-21 feet) long.
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then it resists both compression and tension equally well, and

hence the propriety of having- the top and bottom flanges

equally large.

The manifest advantage of having the material accumu-

lated at a distance from the neutral axis, has led to putting

as much as possible of the area of the whole section into the

flanges, and thereby reducing the web or vertical part to the

smallest practical thickness. The web is required to main-

tain the connection between the top and bottom flanges, and

to resist the shearing effects of the load. In rolled-iron

beams, as usually made, the thickness of the web is more

than sufficient to resist these strains.

457. The Moment of Inertia Arithmetically Considered.

For the intelligent use of the rolled-iron beam as a substi-

tute for the wooden beam in floors, as well as for other uses,

the rules already given need modification.

The resistance of a beam to flexure or bending is termed

its moment of inertia. This is represented in symbolic for-

mulas by the letter 7. In formula (111.), (Art. 300), the

coefficient -% and the symbols bd 3

represent the moment

of inertia, and /, its symbol, may be substituted for them,

thus:

PN S PN3

6 =
rl

The moment of inertia for any cross-section is equal to

the sum of the products of each particle of the area o the

cross-section, into the square of its distance from the neutral

axis.** For example : in a beam with a cross-section of the

I form, a horizontal line drawn through the centre of area

of the cross-section will be the neutral line for strains within

* Rankine's Applied Mechanics, Art. 573.
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the limits of elasticity. Let the area be divided into a large

number of small areas. Then, for the portion of the figure

above the neutral line, multiply each of these small areas by
the square of its vertical distance above the neutral line, and

the sum of these products will equal the moment of inertia

for the upper half of the section. A like process will give

the moment of inertia for the lower half. The two in this

case will be equal, and their sum is the moment of inertia

for the whole section. The result thus obtained will not be

exact, but will approach accuracy in proportion to the small-

ness of the parts into which the area of the cross-section is

divided.

458. Example A. As an illustration, let ABCD, in Fig.

69, represent the cross-section of a beam
; MN, drawn

through the middle of the height AD, being - _ .

the neutral axis
;
and let the lines EF, GH, IJ,

KL, OP, QR, and ST divide the area ABMN
into twenty equal* parts. The four squares in

each horizontal row are equally distant from

the neutral line MN, and may therefore M

be taken together. Suppose each of these

squares to measure 2x2 inches, then the area

of each will be 4 inches, and of the four in

each horizontal row will be 4x4=16 inches D

area. The distances from the neutral line to

the centre of each square will be as follows :

In the first row, D = i

" " second " D = 3
" " third " D 5

" " fourth " D = 7
" "

fifth
" D = 9
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Their moment of inertia will be as follows :

In the first row, 7, = 16 x i
2 = 16 x i

" " second " I2 = 16 x 3' = 16 x 9
" " third " I3 16 x 5

2 = 16 x 25
" " fourth " 74

= 16 x f = 16 x 49
" "fifth " 75 = 16 x 9

2 = 16 x 81

and their sum 7= 16(1 + 9 + 25 + 49 + 81)= 16 x 165 = 2640.

459. Example B. If we subdivide each of the squares

in Fig. 69, and take the sum of the products as before, the

result will be larger and nearer the truth. For example :

divide each of the squares into four equal parts, each one

inch square. There will be eight of these parts in a row,

and ten rows. The area of each row will be 8x 1=8, and

their distances from the neutral line will be -J, f, f , J, f ,

V- ~/> V-> and V- respectively. The moments of

inertia will be as follows :

In the first row, /, = 8 x ()
a = 8 x l 2x i

" second "
7, = 8 x (f)

2 :=8x f = 2 x 9
" third "

/, = 8 x (f)
2 = 8 x *. = 2 x 25

" fourth " 7 4 = 8 x Q-)
2 = 8 x **- = 2 x 49

"
fifth

"
7, = 8x (|)*

= 8x ^L=2x 81

" sixth " I 6 = 8 x (^ = 8 x -LfL = 2 x 121

" seventh " 7 7
= 8 x (-V

3
-)'
= 8 x .IJA = 2 x 169

"
eighth

u
/, = 8 x (iff = 8 x AjA = 2 x 225

" ninth "
/. = 8 x (-

1

/)
2 = 8 x ifi = 2 x 289

" tenth N
" 7/0

= 8 x (J/)
2 = 8 x AJJ. 2 x 361

which is equal to twice the sum of the series of

1+9+25+ etc.

or, 7=2x1330=2660

This result exceeds in amount the previous one (2640).
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460. Example C. If the eighty squares of this last

trial be each subdivided into four equal parts, the whole

cross-section will contain 4x80=320 parts; there will

be twenty rows, with sixteen in each row
;
the area of each

part will be -J-x| = J; and the perpendicular distance

from the neutral line to the centres of these 320 parts

will be :

In the first row, J
" second "

f
" third "

J
" fourth "

I

and so on, each distance being a fraction having 4 for a de-

nominator, and for a numerator one of the arithmetical series

of the odd numbers i, 3, 5, 7, 9, 11, etc., to 39. The

moment of inertia will be the sum of the products, as follows :

In the first row, /, = i6xx()
2

" second " /,= i6xix()
2

" third "
/, = 16 x i x ()

2
etc.

These are equal to :

In the first row, 7, = 16 x ix^ x i
2 = x i

a

" second " I2 = 16 x \ x -^ x f = x 3
2

" third u I3 = i6xix-^x 5'
= x 5' etc.

Thus the sum of all the products will be equal to a quarter

of the sum of the squares of the arithmetical series of the

odd numbers i, 3, 5, 7, 9, 11, etc., to 39.

Selecting the squares of these numbers from a table of

squares, we find their sum to equal 10,660, and then, as

above,

/ = x 10660 = 2665
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4-61. Comparison of ResuBt. We have now the three

results, 2640, 2660, and 2665, gradually increasing as the

number of parts into which the sectional area is divided in-

creases, and tending towards the true amount, to which it can

only arrive when the parts become infinitely small and in-

finite in number. To compute these by the arithmetical

method would be impossible, but by the calculus it is exceed-

ingly simple and direct. The formula for the moment of

inertia, as generally used, is complicated, but for a rectangu-

lar section in a horizontal beam, subject to limited vertical

pressure, is simple.

462. Moment of Inertia, toy the Calculu Preliminary

Statement. Let ABCD in Fig. 70 represent the rectangu-

lar cross-section of a beam ; let MN be the neutral line,

and the two lines at EF be drawn parallel to MN. Let

the breadth of the section EF equal 7,
JM

and the perpendicular distance from the

neutral line to the lower line EF equal

x. The two parallel lines at EF may be

taken at any distance, x, from the neu-

tral line. This distance is variable ;
x is

a variable representing any and every dis-

tance possible on the line GH, from zero

to its full length. It is always the distance

from the line MN to 7, the lower line

at EF, wherever 7 be taken. The ver-

tical distance between the two lines at

EF is termed dx, which means the differential of x, or

the difference in the length of x when slightly increased

by the movement of 7 farther from MN. This augmen-

tation, dx, is taken infinitesimally small.

Now the area of the space between the two lines at EF
will be the product of its length by its height, or 7 x dx.

M-
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4-63. Moment of Inertia, by the Calculus. The mo-

ment of inertia is equal (Art. 457) to the sum of the products

of each particle of the area of the cross-section, into the

square of its distance from the neutral axis. In the last

article, the expression ydx represents the area of the in-

finitesimally small space at the lines EF, Fig. 70. The dis-

tance from this small area to the neutral axis is x, and the

square of the distance is x* ;
therefore x*ydx equals the

area into the square of its distance, equals the moment of

inertia of the small area ydx\ or, the differential of the

moment of the area of the whole figure ABMN. This

differential is expressed thus,

dl=x*ydx (203.)

This expression represents the moment of only one of the

infinitesimal parts into which the area ABMN is supposed

to be divided. To obtain the moment of the whole area, it

is requisite to add together the moments of all the infinitesi-

mal parts ; or, to obtain from the differential (form. 203.) its

integral. The rule for this is,*
" Add one to the index of the

variable, and divide by the index thus increased and by the

differential of the variable." Applying this rule to formula

(203.) it becomes

This is in its general form. To make it definite, we have

y = b, the breadth
;
and -r, at its maximum, equals %d,

half the depth. These values substituted for y and x>

we have

(204)

*
Ritchie, Dif. and Integ. Calculus, p. 21.
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This result is the moment of inertia for the upper half of the

section of the beam, and represents the resistance to com-

pression. The resistance to tension in the lower half of the

beam is (under the circumstances of the case we are consider-

ing) an equal amount
;
hence for the two we have*

(205.)

464-. Application and Comparison. This formula gives

the value of the moment of inertia for the whole section; for

the two parts, one above and the other below the neutral

line. To obtain the value of the part above the line, for com-

parison with the results obtained in Arts. 4-58 to 460, we

take formula (204.)

in which b is the breadth and d the depth of the beam.

The section of beam given in Art. 4-58, Fig. 69, was proposed

to be 8 inches broad and 20 inches high, or AB = b = 8

and AD d 20. With these figures in the formula, we

have

/= ^ x 8 x 203 = 2666f

This is the exact amount. In the three trials of Arts. 4-58

to 4-60, we had the approximate values 2640, 2660 and

2665. In the last trial, in which the parts were small and

numerous, the result was a close approximation.

*
Moseley, Am. Ed. by Mahan, Art. 362.
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465. Moment of Inertia Graphically Represented.

The two processes, arithmetical and by the calculus,

are graphically represented in Y

Fig. 7 1
,

in which the area of the

figure contained within the straight

lines OB and AB and the curved

line OA, is the correct area by

the calculus, to which the sum of

the squares of the arithmetical

progression I, 3, 5, 7, 9 and u

closely approximates. Here x

and y, indicating the distances

along the axes OX and OY, are

co-ordinates to points in the curve,

as Aj C, D, E, etc., these points

being midway in the difference be-

tween the sides of each two con-

tiguous squares. The values of y
for these points are 2, 4, 6, 8,

10 and 12
;

a difference between FIG. 71.

each two consecutive values equal to 2. The consecutive

ordinates x are i, 4, 9, 16, 25 and 36; or i\ 2\ 3",

4
2

, 5
2 and 62

.

Comparing these values ol y and x in each pair, we

have

In the first pair, y
" " second "

" " third "

" " fourth "'

" "
fifth

,

"

" " sixth "

y =
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From this, the relation between y and x is readily seen to

be represented by the following expressions :

(D- - = "v

f = 4* (206.)

4-66. Parabolic Curve Area of Figure. The ex-

pression just obtained is the equation to the curve, and

this curve is a parabola, with / = 2, or y* 2px.* By
formula (206.) any number of points in the curve may be

found, and the curve itself drawn through them. Also, by
it and by the rules of the calculus, the area of the figure

inclosed between the curved line and the two lines AB and

BO may be found. To this end, let the narrow space in-

cluded between the two lines GH, drawn perpendicular to

OB from H to G (a point in the curve), be a small por-

tion of the area of the whole figure ; dx, the distance be-

tween the two lines, being exceedingly small. The area of

this narrow space will be the product of its length by its

breadth, or y x dx. The differential of formula (206.), the

equation to the curve,f is

2ydy = Afdx

\ydy dx

Multiplying both sides by y gives

= ydx

* Robinson's Conic Sections and Analytical Geometry, 1863, p. 50.

f Ritchie's Dif. and Integ. Calculus, p. 20.
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which equals the differential of the area as above shown.

The integral of this value of ydx is, by the rule (Art. 4-63),

\ffdy
=

or the area

This is the area of the figure bounded by the curved line

OA and the straight lines AB and BO.

467. Example. The example given in Art. 460 may
be taken to show an application of the last formula. The

number of horizontal rows of parts into which the area is

there divided is 20, and the last number of the arithmetical

series is 39. By an examination of Fig. 71, it will be seen

that AB, the base of the figure, is equal to the side ol the

last square plus unity. Therefore, 39+1 =40 is the base of

the area proposed in Art. 460, or. y = 40. From the dis-

cussion in that article, it appears that the small squares con-

sidered are each J of unity in area, from which the area

of the figure in that case is found to be one quarter of the

sum of the squares of the arithmetical series ; or, by formula

(207.},

A = i x i/ =

To apply this result to the present case, where y = 40, we

have

A = -fa x 4O
3 = 2

the same result as in Art. 464.
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468. Moment of Inertia General Rule. That formula

(207'.) may be general in its application, we need to find a

proper coefficient.

Let the beam, instead of being 8 inches wide, as in Fig.

69, be only one inch wide, and let the portion above the

neutral line be divided by horizontal lines into any number

of equal parts. Put n for the number of parts, and / for

the thickness of each part. The area of each part will be

I x t = t inches, and the several distances from the neutral

line to the centre of each part will be, respectively, -J/, f/,

^ 2^_ T

|/, |^, etc., to the last, which will be "--
1.

Now, the moment of inertia of each part being its area

into the square of the distance to its centre of gravity, there-

fore the several moments will be as follows :

In the first piece, t
(

i x
-J

== i
2
x \f

second "
/
(3

x
^)

= 3* x i'
3

( t \
2

third "
/^5

x
-J

=
5

2

x^t
3

f t \
2

fourth "
/
^7

x
-J

= f x J/
3

last
"

t
((2n i)^J

= (2n i)
2 x \f

The sum of these will be

5= i/
3

[i
2 + 3

2 + 5
2

+7
2 + ......

(2n i)
2

] (208.)

But the sum of the series I
2 + 3" + 5

2 + etc., is the area of

the parabolic figure (Fig. 71), ancl has been found to be equal

to \f (form. 207.)

" "

" "
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Now y, when at its maximum, coincides with the base

AB of Fig. 71, and is equal to the side of the last square

plus unity. As above, the side of the last square is 2n I,

from which y 2n, and

and therefore formula (208.) becomes

5 = \fvt (209.)

which is a rule for ascertaining correctly the moment of

inertia for a beam one inch broad.

469. Application. To show the application of the

above, take the example of Art. 458, where the number of

slices is 5 and the thickness is 2, and we have, by the use

of formula (209.\

The formula gives the result for a beam one inch broad.

The beam in Art. 458 is 8 inches broad. Therefore, for

the full amount we have

8 x 3334 = 2666f

Again, take the example of Art. 460, where t = % and

n = 20, and we find as the result

and 8 x 333^- = 2666f

Thus in both cases we have the same result as that obtained

directly by the calculus. If b, for the breadth, be added

to formula (209.) we shall have the complete rule, thus :

/ = fif
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and since /// equals the height above the neutral line,

equals ,
the half of the depth of the beam,

t
3n3 =

(tn)
3 & (%dj m \d

s

and this value of t
sn3 substituted for it in the above equa-

tion, gives

This is for one half the beam. For the whole beam we have

twice this amount, or

the same as found directly by the calculus in formula (205.}

470. Rolled-Iron Beam Moment of Inertia Top
Flange. An expression for the moment of inertia appropri-

ate to rolled-iron beams of the I form of section (Fig. 68)

A B may be obtained directly from the for-

mula (205.) for the rectangular section.

In Fig. 72, showing the cross-section

required, b equals the breadth of the

beam, or the width of the top and bot-

tom flanges, and t equals the width

or thickness of the web
;

b minus t

equals b
/y

d equals the entire height

of the section, and d
f

the height be-

tween the flanges. MN is the neu-
FlG - 72. tral line drawn at half height.

By formulas (203.) and (204.) the moment of inertia for

the part above the neutral axis is

M

T
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If this be applied so that x = \d, the result (%bd
3

) y
as in

(204*), is the moment for the rectangle ABMN. Again, if

it be applied with x = \dt ,
the result (^bdf) will be the

moment for the rectangle EFMN. Now, if the latter re-

sult be subtracted from the former, the remainder will be

the moment for the area ABEF, the upper flange, or

4-71. Rolled-Iron Beam Moment of Inertia Web.
Formula (210.) is the moment of inertia for the top flange.

The moment of inertia for the upper half of the web is that

due to a rectangle having for its breadth y = t, and for its

height x = \dt ,
and by Art. 463,

and since / = b b
t ,

therefore

4-72. Rolled-Iron Beam moment of Inertia Flange
and Web. Formula (211.) is the moment of inertia for the

upper half of the web. Added to formula (210.), the sum,

representing the moment of inertia for all of the beam above

the neutral line, will be
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4-73. Rolled-Iron Beam Moment of Inertia Whole
Section. Formula (212.) is the moment of inertia for that

half of the rolled-iron beam which is located above the neu-

tral line. The moment for the portion below the line will

be equal in amount
;
and therefore, for the moment of the

entire section, we have twice the amount of formula (212.) or

/ = TV(WW,//) (213.)

474. Rolled-Iron Beam Moment of Inertia Compari-
son with other Formulas. Formula (213.) is the same as

that given by Professor Rankine* and others, and is in gen-

eral use. Canon Moseleyf gives an expression which is

complicated. Mr. Edwin Clark, in his valuable work on the

Britannia and Conway Tubular Bridges, Vol. I., p. 247, gives

the formula

in which d2 is the distance between the centres of gravity

of the top and bottom flanges, a is the area of the top or

bottom flange, and a
/

is the area of the web. This is

more simple than the common formula (213.), but is not

exact. It is only an approximation. Its relation to the true

formula will now be shown.

From formula (213.) we have, multiplying by 12,

Of these symbols we have (Fig. 72, putting h = AE
),

d = d2 + h, b
t
= bt and d

t
= d2 h

By substitution, we now have

1 2/ = b(d2 + //)'
-

(b-t}df

* Rankine's Applied Mechanics, pp. 316 and 317.

f Moseley's Mech. of Eng., Am. Ed. by Mahan, Art. 504.



MOMENT OF INERTIA FORMULAS COMPARED. 329

and since (bt)df bd?td? = bd?a t
d* (putting a

t
for

the area of the web); and since dj d2 h, therefore we

have

= b(d2 4- h)
3 -

\b(d2-h)
3-a

td?

1 2/ = b(d, 4- //)*
-

b(ds h)
3 + a

tdf

Then we have

(d, + /i)

3 = d/ +

(d2 + h)
3

-(d2-/i}
3 = o + &//// + o 4- 2k3

Substituting these in the above, we have

I2/ = b(6dfh 4- 2k3

) + a
tdf

The area of the top flange equals bh = a, therefore

1 2/ = 6a(d;+ \h
2

} + a
td? or,

/ = &\6a(d;+ i//) + *,<//] (215.)

In Mr. Clark's formula, (214-), we have

+
y) or,

+ a.df)

Comparing this with the reduction of the common formula

as just found [form. (215.)'], the difference is readily seen

to be, that while in the one the quantities a and a
t

are

each multiplied by the factor df, in the other the factor for

a is (X/+i//) and that for a
t

is df.
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475. Rolled-Iron Beam moment of Inertia Compari-
son of Itctult*. To show, by an application, the difference

in the results obtained by the two formulas (214-} and (215.),

let it be required to find the moment of inertia for a rolled-

iron beam 12 inches high and 4 inches broad, and in

which the top and bottom flanges are one inch thick, and

the web one half inch thick. Here we have d 12, d
t 10,

<4=n, / = J, =4, ^ = 3i, # = 4x1=4, a
/

and h = i ; and by formula (214) we have

/= .^x 1 1
2
x (6x4 + 5) = 292^5-

The value by formula (215.) is

The value by the common formula, (213.), is

1 = AK4 x I23)~(3 5 x io
3

)]
= 284!-

Thus we have by either of the two formulas (213..) or (215.)

the exact value, /= 284^, while by formula (214) the

value obtained is /= 292^.

476 Rolled-Iron Beam moment of Inertia Remarks.

When, in a rolled-iron beam, the top and bottom flanges

are comparatively thin, the difference between d
t
and da

will be small, and in consequence the value of 7 as derived

by formula (214.) will differ but little from the truth. This

formula, therefore, for such cases, is a near approximation,

and for some purposes may be useful
;
but formula (215.),

and that from which it is derived, (213.), are exact in their

results, and should be used in preference to formula (214-)

in all important cases.
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477. Reduction of Formula Load at Middle. The

expression (213.), then, is that which is proper for the

moment of inertia for rolled-iron beams namely :

In Art. 303, formula (115.), we have

wr
"

16

This is for a beam supported at each end, with the load in

pounds at the middle, the length in feet and the other

dimensions in inches. F is a constant, which, from an

average of experiments (Art. 701) upon rolled-iron beams,

has been ascertained to be 62,000. The value of /, the

moment of inertia, has been computed, for many of the sizes

of beams in use, by formula (213.), and will be found in

Table XVII.

We have, therefore, from (115.)

Wl s

12 X 62000 =-vr-
16

744000 =~ (216)

478. Rules-Values of JF, I, 6 and JT. Rule (216) is

for a load at the middle of a rolled-iron beam. The values

of the several symbols in (216) may be had by transpositions,

as follows :

The weight, W= (217.)

length, 7 =^44^.
Wl8

t

deflection, 6 =
-, (219.)

744000/
Wla

moment of inertia, /= -
744000<5
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479. Example Weight. Formula (217.) is a rule by
which to find the weight in pounds which may be carried at

the middle of a rolled-iron beam, with a given deflection.

As an example : What weight may be carried at the middle

of a 9 inch 90 pound beam, 20 feet long between bear-

ings, with a deflection of one inch ?

Here we have 6 = i, / = 20 and (from Table XVII.)
/= 109-117 ; and, by the formula,

TT _ 744000 x log- H7 x iW= /- -^- -=10147-881

or the weight to be carried equals 10,148 pounds, or say 5

net tons.

480. Example Length. Formula (218.) is a rule by
which to find the length at which a beam may be used when

required to carry at the middle a given load, with a given
deflection. For example : To what length may a Buffalo

6 inch 50 pound rolled-iron beam be used, when required

to carry 5000 pounds at the middle, with a deflection of

-^ of an inch ?

Here 7=29-074 (from Table XVII.
),

6 = 0-3 and

W 5000 ; and, by the iormula,

/= //7440QQX 29-074x0.3 = IQ
5OOO

or the length may be 10 feet 1 1 inches.

481. Example Deflection. Formula (219.) is a rule

for finding the deflection in a rolled-iron beam, when carry-

ing at the middle a given load. As an example : What de-

flection will be caused in a Phoenix 9 inch 70 pound beam

20 feet long, by a load of 7500 pounds at the middle ?
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Here ^=7500, / = 20 and (from Table XVII.)

/ = 92-207 ; and, by the formula,

75OO X 2O
8

=087461
744000 x 92 207

or the deflection will be
-J

of an inch.

482. Example moment of Inertia. In formula

we have a rule by which to ascertain the moment of inertia

of a rolled-iron beam, laid on two supports, and carrying a

load at the middle. To exemplify the rule : Which of the

beams in Table XVII. would be proper to carry 10.000

pounds at the middle, with a deflection of one inch
;
the

length between the bearings being twenty feet ?

Here W 10000, / = 20 and 6 = i, and by the for-

mula,

ioooo x 2o
3

/ - - = 107-527
744000 x i

or the required moment of inertia is 107-527. The nearest

amount to this in Table XVII. is 107-793, pertaining to the

Phoenix 9 inch 84 pound beam. This beam, therefore,

would be the one required.

483. Load at Any Point General Rule. The rules

just given are for cases where the loads are at the middle.

Rules for loads at any other place in the length will now be

developed.

Formula (%3*\ is
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If bd* be multiplied by -^ its value will not be

changed, and there will result

\2bd3
i2

and formula &f. becomes

Bv formula (154.\ in ^4r/. 376,

Bl

and as rl = 6, or r =
-j,

therefore

a ~
d
-

Fdd

Fdj

For a in the above, substituting this value, we have

mn _

-

a

= 12/73

484. Load at Any Point on Rolled-Iron Ream*. The

moment of inertia, /, in formula (221.) is [form. (205.)'],

I -?bd
3 for a rectangular beam. For a tube, or for a

beam of the I form, it is, by formula (213.),

If in (221) we substitute for / this value of it, we have

iWlmn = Fd(bd
3-b

{d?) (222.)
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This is a rule for rolled-iron beams supported at each end

and carrying a load at any point in the length, with a given

deflection
;
and in which W is the weight in pounds, m

and n the distances from the load to the two supports,

and m plus n equals / equals the length ; m, n and /

all being in feet
;

6 is the deflection, b and d are the

breadth and depth of the beam, b
t
and d

t
the breadth and

depth of the part which is wanting of the solid bd (Art.

470) ; <?, b, d, b
t

and d
t

all being in inches
;
and F is

the constant for rolled iron (Table XX.).

485. Load at Any Point on Rolled-Iron Beams of

Table XVII. The value of F is 62,000. If it be substituted

for F in (221) we shall have

4 Wlmn 1 2 x 62OOO/d

^Wlmn = 744000!d

Wlmn = i86ooo/<?

iW = .

Imn

which is a rule for ascertaining the weight which may be

carried, with a given deflection, at any point in the length

of any of the rolled-iron beams of Table XVII.

486. Example. What weight may be carried on a

Paterson 12^ inch 125 pound rolled-iron beam, 25 feet

long between bearings, at 10 feet from one of the bearings,

with a deflection of 1-5 inches ?

Here we have 6 = 1-5, m 10, n = 15, / = 25 and

/ = 292-05 (from Table XVII.) ; and hence

186000x292.05x11
25 x lox 15

or the weight allowable is, say 21,730 pounds.
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487. Load at End of Rolled-Iron Lever. In formula

(113.) we have

Wl3

12F
=~I6-

or
>

Wl' = I2FI6

This expression is for a beam supported at each end and

loaded at the middle. In a lever the strains will be the same

when the weight and length are each just one half those in a

beam supported at each end. Hence if for W we take

2P, and for / take 2n, P being the weight at the end

of a lever and n the length of the lever, we shall have, by
substitution in the above,

2Px 2H
3 = \2FId

i6Pn*= \2FId

i6Pn 3 = Fd (bd
3-b

tdf) (224.)

and Pn 3 = %Fl6 (225.)

and further, since F= 62000 (Table XX.), therefore

Pn s = 465001$

46 5ooISP =
n~

which is a rule for ascertaining the weight which may be

supported at the free end of a lever, with a given deflection,

the lever being made of any one of the rolled-iron beams of

Table XVII.

488. Example. Let it be required to show the weight

which may be sustained at the free end of a Trenton 15^-

inch 150 pound rolled-iron beam, firmly imbedded in a wall,

and projecting therefrom 20 feet; the deflection not to

exceed 2 inches.
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Here 7=528-223 (Table XVIL), <S = 2 and n = 2O',

and by formula (226.)

or the weight which may be carried is 6140 pounds.

489. Uniformly Distributed Load on Rolled-Iron

Beam. By formula (115.) we have

This is for a load at the middle of a beam. Let U rep-

resent an equally distributed load; then %U will have an

effect upon the beam equal to the concentrated load W,

(Art. 340), and hence, substituting this value,

f//
3 = 12FI6

\Ul
3 = F6 (bd

3-b
td^j (227.)

By Table XX. F = 62000, and the formula reduces to

Ul 3

1190400/6

u=^ol ^
which is a rule for ascertaining the amount of weight, equally

distributed, which, with a given deflection, may be borne

upon any of the rolled-iron beams of Table XVIL

490. Example. What weight, uniformly distributed,

may be sustained upon a Buffalo 10^ inch 105 pound
rolled-iron beam; 25 feet long between bearings, with a

deflection of f of an inch ?
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Here 7=175-645 (Table XVII.), rf = o-75 and 7=25;
and therefore, by (228.),

u= 1190400 xj 7^645 ^0.75
25

or the weight uniformly distributed is 10,036 pounds.

491. Uniformly Distributed Load on Rolled-Iron

Lever. A rule for a lever loaded at the free end is given in

formula (225.),

Pn3 =

When a load concentrated at the free end of a lever is

equal to f of a load uniformly distributed over the length

of the lever, the effects are equal. (Art. 347.)*

If U equals the load equally distributed, and P the

load concentrated at the free end, then fU P, and sub-

stituting this value for P in formula (225.) gives

= \2FI6

6 Un3 = F6 (bd
s-b

tdf) (229.)

Putting for F its value 62,000, and reducing, we have

Uns
1 24.000/6

124.000/6~~"

which is a rule for ascertaining the load, uniformly distrib-

uted, which may be sustained upon any of the rolled-iron

beams of Table XVII.
,
with a given deflection, when used

as a lever.

* Rankine, Applied Mechanics, p. 329.
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492. Example. What weight, uniformly distributed,

may be sustained upon a Trenton 6 inch 40 pound
rolled-iron beam, used as a lever, and projecting 10 feet

from a wall in which it is firmly imbedded; the deflection

not exceeding f of an inch ?

Here / = 23 761 ,
6 = f and n = 10

;
and by (230.)

io
j

or the weight will be 1965 pounds.

493. Component* of Load on Floor. When rolled-

iron beams are used as floor beams, they have to sustain a

compouncj load. This load may be considered as composed
of three parts, namely :

First : The superincumbent load, or load proper;

Second : The weights of the materials within the spaces

between the beams, and of the covering ; and,

Third : The weight of the beams themselves.

494. The Superincumbent Load. This will be in pro-

portion to the use to which the floor is to be subjected. If

for the storage of merchandise, the weight will vary accord-

ing to the weight of the particular merchandise intended to

be stored. Warehouses are sometimes loaded heavily, and

for these each case needs special computation. For general

purposes, such as our first-class stores are intended for, the

load may be taken at 250 pounds per superficial foot (Art.

368). A portion of the floor may in some cases be loaded

heavier than this, but as there is always a considerable part

kept free for passage ways, 250 pounds per foot will in

general be found ample to cover the heavier loads on floors

of this class.
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On the floors of assembly rooms, banks, insurance offices,

dwellings, and of all buildings in which the floors are likely

to be covered with people, the weight may be taken at 66,

or say 70 pounds per foot ;
66 pounds being the weight

of a crowd of people (Art. 114).

495. The Materials of Construction Their Weight.

These (not including the iron beam) will differ in accordance

with the plan of construction. As usually made, with brick

arches, concrete filling, and wooden floor laid on strips bed-

ded in the concrete, this weight will not differ much from

70 pounds per superficial foot, and, in general, it may be

taken at this amount.

496. The Rolled-Iron Beam Its Weight. The differ-

ence in the weight of rolled-iron beams is too great to per-

mit the use in the rule of a definite amount, taken as an

average. To represent this weight, therefore, we shall have

to make use of a symbolic expression.

Let y equal the weight of the beam in pounds per lineal

yard, and c equal the distance in feet between the centres

of two adjacent beams. Then \y will equal the weight of

the beam per lineal foot
;
and this divided by c will give,

as a quotient,

equals the weight of beam per superficial foot of the floor.

497. Total Load on Floors. Putting together the

three weights, as above, we have the total weight per super-

ficial foot as follows :
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For the floors of dwellings, assembly rooms, banks, etc.,

the superincumbent load is 70 pounds ;

the brick arches, concrete, etc., equal 70
"

y
and the rolled-iron beams equal

These amount in all to

/= HO +

For the floors of first-class stores,

the superincumbent load is 250 pounds;

the brick arches, concrete, etc., equal . 70
"

y
and the rolled-iron beams equal

or, in all,

498. Floor Beam Distance from Centres. In formula

>.)
U stands for the weight uniformly distributed over

the length of the beam. When / is taken to represent the

total load in pounds per superficial foot of the floor, c the

distance apart in feet between the centres of two adjacent

beams, and / the length of the beam in feet, then

Substituting for U in formula (228.} its value as here

shown, we have
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When r represents the rate of deflection per foot lineal

of the beam, we have rl d, equals the whole deflection.

Substituting for 6 in formula (234-) this equivalent value

we have

J *
I
3

Again ;
for f substituting its value as in (232^) t

we have

/

(

?-

140 + , = ---

which is a rule for ascertaining the distance apart from cen-

tres between rolled-iron beams, in the floors of assembly

rooms, banks, etc., with a given rate of deflection.

4-99. Example. It is required to show at what dis-

tance from centres, Paterson io| inch 105 pound rolled-

iron beams, 25 feet long, should be placed in the floors of

a bank, in which the rate of deflection is fixed at 0-035 f

an inch.

Here we have 7=191.04 (Table XVII.), r ~ 0-035,

/= 25 and y = 105 ; and by (236.)

85024x191.04x0-035 105
' = - -- -- = '
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or the distance from centres should be, say 3 feet 4!

inches.

5 CO. Floor Beams Distance from Centre* Dwellings
etc. If the rate of deflection be fixed, and at 0-03 (Art.

314), then formula (236.), so modified, becomes

_

420

which is a rule for ascertaining the distance apart from cen-

tres of rolled-iron beams, in the floors of assembly rooms,

banks, etc., with a rate of deflection fixed at 0-03 of an

inch per foot lineal of the beam.

501. Example. What distance apart from centres

should Buffalo \2\ inch 125 pound rolled-iron beams 25

feet long be placed, in the floor of an assembly room ?

Here 7=286.019 (Table XVII.), 7=25 and 7=125;
and by formula (237.)

25_l;0frx 286.019 _ 125

or the distance from centres should be 4! feet, or 4 feet

4J inches.

The distances from centres of various sizes of beams have

been computed by formula ($7*\ and the results are re-

corded in Table XVIII.
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502. Floor Beams Distance from Centres. If in for-

mula (235.) we substitute for / its value in (233.) we shall

have

ngoAOoIr

i 90400Ir*-i-

i i goAooIr y
320^ == -

Zjs
---- -

i i 90400Ir y

y

320/
5

320 x 3

c =
I

3

960

This is a rule for ascertaining the distance apart from cen-

tres between rolled-iron beams, in floors of first-class stores,

with a given rate of deflection.

503. Example. At what distance apart should Phoenix

15 inch 150 pound beams 25 feet long be placed, with a

rate of deflection of r = 0-045 ?

Here we have 7=514-87 (Table XVII.), r = 0-045,

/= 25 and y = 150; and in formula (238.)

3720x514-87x0-045 150 _~~
or the distance required is 5-36 feet, or 5 feet 4^ inches.

504. Floor Beams Distance from Centres First-class

Stores. If the rate of deflection be fixed, and at 0-04 of an

inch (Arts. 3l3 f 314 and 368), then formula (238.) becomes
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which is a rule for ascertaining the distance apart from cen-

tres of rolled-iron beams, in floors of first-class stores, with a

rate of deflection fixed at 0-04 of an inch per foot lineal of

the beam.

505. Example. At what distance apart should Buffalo

I2j inch 1 80 pound rolled-iron beams 20 feet long be

placed, in a first-class store?

Here 7 = 418.945 (Table XVII.), I = 20 and 7=180;
and, by the above formula,

148-8 x 418-945 180

or the distance from centres should be 7-6 feet, or 7 feet

7J inches nearly.

The distances from centres, as per formula (239!), have

been computed for rolled-iron beams of various sizes, and

the results are recorded in Table XIX.

506, Floor Arches General oniderafion. If the

spaces between the iron floor beams be filled with brick

arches and concrete, as in Art. 495, care is necessary that

these arches be constructed with very hard whole brick of

good shape, be laid without mortar, in contact with each other,

and that the joints be all well filled with best cement grout

and be keyed with slate. As to dimensions, the arch when

well built need not be over four inches thick for spans of

seven or eight feet, except for about a foot at each spring-

ing, where it should be eight inches thick, and where care

should be taken to form the skew-back quite solid and at

right angles to the line of pressure.

In order to economize the height devoted to the floor, it
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is desirable to make the versed sine or rise of the arch small.

But there is a limit, beyond which a reduction of the rise

will cause so great a strain that the material of which the

bricks are made will be rendered liable to crushing. Experi-

ments have shown that this limit of rise is not much less than

ij inches per foot width of the span, and in practice it is

found to be safe to make the rise i inches per foot.

507. Floor Arclic Tie-Rods. The lateral thrust ex-

erted by the brick arches may be counteracted by tie-rods

of iron. The arches, if made with a small rise, will differ but

little in form from the parabolic curve. Let Fig. 73 repre-

sent one half of the arch and tie-rod. Draw the lines AD
and DC tangent to the points A and C. Then AE = EB*

FIG. 73.

equals i of the span, or i^, and DE BC equals the

versed sine, or height of the arch. If DE, by scale, be

equal to the load upon the half arch AC, then AE equals

the horizontal strain
;
or

DE : AE ::

v : j : :

\ H
: H

(240.)

in which U is the load, in pounds, and s is the span

and v the versed sine, both in feet. To resist this strain

*
Tredgold's Elementary Principles of Carpentry, Art. 57 and Fig. 28.
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the rod must contain the requisite amount of metal. The

ultimate tensile strength of wrought-iron may be taken at an

average of 55,000 pounds per inch. Owing, however, to de-

fects in material and in workmanship (such, for instance, as

an oblique bearing, which, by throwing the strain out of the

axis and along one side of the rod, would materially increase

the destructive effect of the load), the metal should be

trusted with not over 9000 pounds per inch. If a rep-

resent the area of the tie-rod in inches, then

90000 = H

Substituting this value of H in formula (240.) we have

9000* =g (*4-Z.)

For U we may put its equivalent, which is the load per

foot multiplied by the superficial area of the floor sustained

by the rod, or

U=cfs

c being the distance from centres between the rods, and s

the span of the arch, both in feet, and f the weight of the

brick-work and the superimposed load, in pounds, or

70+^. If the arch be made to rise \\ inches per foot of

width, or \ of the span, then 8v = s, and formula (2Jf.l.)

becomes
7Q + ?

a = --- cs
9000

Putting q, the superimposed load, at seventy pounds, we
have

140
a = -- cs

9000

which is a rule for the area, in inches, of a tie-rod in a bank,

office building, or assembly room floor.
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If q be put equal to 250 pounds, then

320
a = - cs

9000

a = o 03-! x cs (^44-)

which is a rule for the area, in inches, of a tie-rod in the

floor of a first-class store.

For general use, the diameter, rather than the area, of the

tie-rod is desirable. We have as the area of any rod,

*,= .7854^

and therefore -7854^* = o-oi^ x cs

and d Vo-oi^cs (45.)

which is a rule for banks, etc.
;
and

d= t/o -04527^

which is a rule for first-class stores.

508. Example. In a first-class store, with beams 20

feet long, and arches 6 feet span : What is the required

diameter of tie-rods ?

Here s = 6, and if there are to be, say two rods in

the length of each arch, then c 6|, and therefore

d= Vo- 04527 x 6fx 6= 1-35

or the required rods are to be if inches diameter.

Tie-rods should be placed at or near the bottom flange,

and so close together that the horizontal strain between them

from the thrust of the arch shall not be greater than the

bottom flange of the beam is capable of resisting.
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509. Headers. In Art. 381 we have the expression

a rule for a header of rectangular section. We have also in

formula (205.)

or 1 2/= bd 3

Substituting this I2/ for b(di)* in the above equa-

tion gives

which is a rule for rolled-iron headers
;
and in which f is

the load in pounds per superficial foot, n is the length of

the tail beams having one end resting on the header, and g
is the length of the header

;
n and g both being in feet.

510. Hcader for Dwelling*, etc. If in (24? )
we sub-

stitute for f its value as per formula (232.), and for F its

value 62,000 (Table XX.), and make r 0-03 (Art. 314),

we shall have

/
38-4x62000x0-03

140 +

71424

which is a rule for ascertaining the moment of inertia of a

rolled-iron header, in a floor of an assembly room, bank, etc.
;

from which an inspection of Table XVII. will show the

required header.
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511. Example. In the floors of a bank, constructed of

Buffalo ioj- inch 105 pound beams, placed 4 feet from

centres : What ought a header to be which is 20 feet long,

and which carries tail beams 16 feet long?

Here y = 105, c 4, ;/ = 16 and = 20; and by

71424

or the beam should be of such size that its moment of inertia

be not less than 266-577. By reference to Table XVII. we

find the beam, the moment of inertia of which is next greater

than this, to be the Pottsville 12 inch 125 pound beam,

for which 7=276-162. This may be taken for the header,

although it is stronger than needed. Should the depth be

objectionable, we may use two of the Pottsville io| inch

90 pound beams, bolted together; for of this latter beam

I = 150-763, and
2x 150-763 = 301-526

considerably more than 266-577, tne result of the computa-

tion by formula (248.). But these two beams, although

nearer the required depth, yet, when taken together, weigh

1 80 pounds per yard ;
while the 12 inch beam weighs but

125 pounds. On the score of economy, therefore, it is

preferable to use the 12 inch beam.

512. Header for Firt-cla Stores. If, in formula

.),
for /, F and r, there be substituted their proper

values, namely, /= 320 + (form. 233
),
F= 62000 and

r 0-04, as in Arts. 367 and 368, we shall have

320 +

(249.)
95232

which is a rule for rolled-iron headers in the floors of first-

class stores.
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As this expression is the same as (248.), excepting the

numerical coefficients, the example of the last article will

suffice to illustrate it, by simply substituting the coefficient

y y
320 + 140 + -
- in place of
95232 71424

5(3, Carriage Beam with One Header. Formula

is appropriate for a case of this kind, but it is for a beam of

rectangular section. To modify it for use in this case, we

have (205.) I = ^bd* ;
or I2/ = bd\ Substituting for

bd*, in (161.), this value, we have

fmn (ng+^cl') \2lFr

which is a general rule for this case.

514. Carriage Beam with One Header, for Dwellings
V

etc. In formula (250.), putting for f its value 140 + -

(form. 232^ for F its value 62,000 (Table XX.), and for

r its value 0-03 (Art. 314), we have

-
1 mn

/=

12 x 62000 xo-03

22320

which is a rule for the moment of inertia of a rolled-iron car-

riage beam, with one header, in floors of assembly rooms,

banks, etc. With the moment of inertia found by this rule,

the required beam may be selected from Table XVII.
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515. Example. In a dwelling floor of Paterson 9 inch

70 pound beams, 20 feet long and 2T
8 feet from centres :

Of what size should be a carriage beam which at 5 feet

from one end carries a header 17 feet long, with tail beams

1 5 feet long ?

Here 7=70, <r=2-8, m = 5, n = 15, =17 and

/ 20; and by (251.) we have

140

'22320'
05 x 17 + f x 2-8 x 20) = 161 -990

or the moment of inertia required is 161-990.

By reference to Table XVII. we find /= 159-597 as the

moment of inertia of the 9 inch 135 pound Pittsburgh

beam, being nearly the amount called for. If the construc-

tion of the floor permit the use of a beam i-J inches higher,

then it would be preferable to use for this carriage beam one

of the Trenton zoj inch 90 pound beams; as these beams,

although stronger than we require, are yet (being 45 pounds

lighter) more economical.

516. Carriage Beam with One Header, for First-class

Stores. If, in formula (250.), f be substituted by its value

520+ (form. 233.\ F by its value 62,000 (Table XX.),

and r by 0-04 (Arts. 367 and 368), we shall have

I =
(320 + \mn
V W

1 2 X 62OOO X O 04

320+]***

which is a rule for the moment of inertia for rolled-iron car-

riage beams, carrying one header, in first-class stores.
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517. Example. Of what size, in a first-class store,

should be a rolled-iron carriage beam 25 feet long, which

carries at 5 feet from one end a header 20 feet long, with

tail beams 25 feet in length ;
the tail beams being Trenton

12^ inch 125 pound beams, placed 2f feet from centres?

Here 7125, c 2f, m 5, n = 20, g = 20 and

I 25 ;
and by formula (252.) we have

i x 5 x 2O

f== ~
29?60

- X (20X20 + 1 X2|X 25)^545.090

or the moment of inertia required is 545-090.

To supply the strength needed in this case, we may take

a Trenton io| inch 135 pound beam, with one of their

I2j inch 125 pound beams; as these two bolted together

will give a moment of inertia a little less than the com-

puted amount. It will be more economical, however, to take

two of the 12 inch 125 pound beams, since the weight of

metal will be less, although the strength will be greater than

required.

518. Carriage Beam with Two Headers and Two Sets

of Tail Beams. Formula (170 ) contains the elements appro-

priate to this case, but is for beams of rectangular section.

It is quite general in its application, although somewhat

complicated. A more simple rule is found in formula (174.).

This is not quite so general in application, but still suffi-

ciently so to use in ordinary cases (see Art. 402), In any
event, the result derived from its use, if not accurate, devi-

ates so slightly from accuracy that it may be safely taken.

We will take, then, formula (174-) and modify it as required
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for the present purpose. For bd* putting I2/, its value

(form. 205.), we have

1 2lFr fm [%cnl+g (mn + r)]

)] (253.)

which is a general rule for the case above stated (see Arts.

I53 and 243).

5 1 9. Carriage Beam with Two Header and Two Set*

of Tail Beam*, for Dwellings, etc. If, in formula (253.\

140 + be substituted for / (form. 232.), 62,000 for F

(Table XX.), and 0-03 for r (Art. 314), then we have as a

result

140 + --

which is a rule for the moment of inertia for this case as

above stated (see Arts. 153 and 243).

520. Example. In a dwelling having a floor of Pater-

son loj inch 105 pound rolled-iron beams, 20 feet

long, and placed 5 84 feet from centres : Which of the beams

of Table XVII. would be appropriate for a carriage beam to

carry two headers 16 feet long, one located 9 feet, and

the other 1 $ feet, both from the same end of the carriage

beam? (See Arts. 153 and 243.)

Here the two headers are respectively 9 feet and 5

feet from the walls. The one 9 feet from its wall, being

farther away than the other, will create the greater strain,



CARRIAGE BEAM WITH TWO HEADERS, FOR STORES. 355

and therefore m =
9, n = n, r 15, J = 5, / 20,

r = 5-84 and y 105 ;
and by formula (254-} we have

105

te?+jjm

or the required moment of inertia is 211-337. By reference

to Table XVII., we find, as the nearest above this amount, the

Trenton or Paterson 10^ inch 135 pound beam, of which

/ = 241-478, and which will be the proper beam for this case.

521. Carriage Beam with Two Header and Two Sets

of Tail Beams, for First-elass Stores. If, in formula (253.),

there be substituted for F its value 62,000 (Table XX.),

v
for f its value 320 H (form. 233.), and for r its value

0-04 (Arts. 367 and 368), we shall have

y
320 +-

7 =

which is a rule for the moment of inertia required in this

case, as above stated (see Arts. 153 and '243).

522. Example. In a store having a floor of Trenton

inch 150 pound rolled-iron beams, 25 feet long and 4-87

feet from centres : What ought a carriage beam to be which

carries two headers 20 feet long, one located 10 feet from

one wall, and the other at 7 feet from the other wall ?

Here the distances to the header more remote from its

wall are to be called (see Arts. 153 and 243) m and n.



356 ROLLED-IRON BEAMS. CHAP. XIX.

Then m = 10, =
15, r = 18, 5 = 7, ^=20, /=25,

r = 4-87 and 7 150; and by formula (255.)

1 50
320 + -^-

4-87 x 15 x 25) + 20(10 x 15+7')]

= 695027

or the moment required is 695027. By an examination of

Table XVII.
,
we find that the moment of the Trenton 15^

inch 200 pound beam is more than enough for this case,

and its use more economical than any combination of other

beams affording the requisite strength.

523. Carriage Beam with Two Headers, Equidistant

from Centre, and Two Sets of Tail Beams, for Dwellings,

etc. If for /, F, bd 3 and r, in formula (183.), their re-

I/

spective values be substituted, namely, /= 140+ (form.

>.),
F= 62000 (Table XX.), bd3 = I2/ (form. 205.\

and r 0-03 (Art. 314); then formula (183.) becomes

y
140 +-
22320

(256.)

which is a rule for a rolled-iron carnage beam, carrying two

headers equidistant from the centre, with two sets of tail

beams, in assembly rooms, banks, etc.

524. Example. In an assembly room, having a floor of

Buffalo io inch 105 pound rolled-iron beams, 20 feet

long and 5-35 feet from centres: What ought a carriage

beam to be which carries two headers 16 feet long, located

equidistant from the centre of the width of the floor, with an

opening between them 6 feet wide ?
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Here ^=5.35, jj/
= 105, / = 20, g = 16 and m = 7 ;

therefore by formula (256.) we have

105
140

'

2232Q

5
'

35
x 20 (Ax 5-35x20'+ 16x7*)= 190761

By reference to Table XVII. we find that either the

Paterson or Trenton ioj inch 105 pound beam is sufficiently

strong to serve for the required carriage beam.

525. Carriage Beam with Two Headers, Equidistant

from Centre, and Two Sets of Tail Beams, for First-elass

Stores. In formula (183^ if we substitute for /, F, bd 3

v
and r their respective values, as follows, f= 320 + --

(form. 233.), F = 62000 (Table XX.), bd9 = 12! (form.

205.) and r = 0-04 (Arts. 367 and 368), we shall have

320+

which is a rule for a rolled-iron carriage beam carrying two

headers equidistant from the centre, with two sets of tail

beams, in first-class stores.

526. Example. In a first-class store, having a floor of

Phoenix 15 inch 150 pound beams 25 feet long and 4-75

feet from centres : What ought a carnage beam to be which

carries two headers 20 feet long, located equidistant from

the centre of the width of the floor, with an opening between

them 8 feet wide ?
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Here we have ^=150, = 4-75, /=2$, g 20 and

m = 8^; therefore formula (257.) becomes

320
3 x 475

29760

or the moment required is 658-813. Table XVII. shows

that either of the 15 inch 200 pound beams is of sufficient

strength to satisfy the requirements of this case.

527. Carriage Beam with Two Headers and One Set

of Tail Beams, for Dwellings, etc. If, in formula (179.), we

substitute for the symbols bd 3

, /, F and r, their respec-

y
tive values, as follows, bd 3 = 12! (form. 205.), f 140 + -;

6C

(form. 232.), F = 62000 (Table XX.) and ^' = 0-03 (Art.

314), we shall have

140 +
I=

22320*
m H /+ > ( + *M (258-)

which is a rule for the moment of inertia of a rolled-iron

carriage beam, carrying two headers with one set of tail

beams, for floors of assembly rooms, banks, etc. (See Arts.

153 and 409.)

528, Example. In a bank having a floor of Paterson

loj- inch 105 pound rolled-iron beams, 20 feet long and

5 84 feet from centres : What ought a carriage beam to be

which carries two headers 16 feet long, located one at 5

feet from one wall and the other at 6 feet from the other

wall, the tail beams being between them?
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Here (Art. 157) m is to be put at the wider opening,

hence m 6, 71=14, s = $, I 20, ^=5-84, = 16,

y = /(/#+<$) = 20 ii ="9 and jy
= 105 ;

and by formula

(258.)

105

/= --
22320

*
' 84

x6[fx5>84xi4x20+i6x 9 x(i4+ 5)]

= 187-593

or, the moment required is 187-593. Referring to Table

XVII. we find that either the Paterson or Trenton loj inch

105 pound beam will be suitable for this case.

529, Carriage Beam with Two Headers and One Set

of Tail Beams, for First-class Stores. If, in formula (258),

y y
320 + -- 140 + -^-

we substitute (as in Art. 525) ^ for ~ we
29760 22320

shall have

320 + -^-

7 = ' m

which is a rule for the moment of inertia for a rolled-iron

carriage beam, carrying two headers and one set of tail

beams, in a first-class store.

530. Example. In a first-class store having a floor of

Buffalo 15 inch 150 pound beams 25 feet long and 4^

feet from centres : What ought a carriage beam to be which

carries two headers 20 feet long, located, one at 5 feet

from one wall, and the other at 8 feet from the other wall,

with tail beams between them ?
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Here (Art. 157) m = 8, n = 17, s = 5, /= 25, = 20,

/= 25 -(5 +8)= 12, ^ = 4i and j>
= 150; and by (269.)

320 +
/= "

29760

= 682-750

which is the moment required. Either of the 15 inch 200

pound beams of Table XVII. will serve the present purpose.

531. Carriage Beam with Three Headers, the Oreatet

Strain being at Outside Header, for Dwellings, etc. As in

Fig. 54, floor beams are sometimes framed with two openings,

one for a stairway at the wall, and another for light at or near

the middle of the floor. In this arrangement the carriage

beams are required to sustain three headers. Formula (190.)

in Art. 425 is appropriate to this case, but is adapted to a

beam of rectangular section. Substituting for bd 3
its value

I2/ (form. 205), for / its value 140 + (form. 232),

for F its value 62,000 (Table XX.), and for r its value

0*03 (Art. 314), we have

140 +
7= ~

22320*
m \il+g(n+s*-v>}-\ (260)

which is a rule for the moment of inertia for a rolled-iron

carriage beam carrying three headers, in an assembly room,

bank, etc. ; the headers placed, as in Fig. 54, so that the one

causing the greatest strain shall not be between the other

two. (See Arts. 252 to 254.)
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532. Example. In an assembly room having a floor of

Trenton 9 inch 70 pound beams 20 feet long and 2-80

feet from centres : Of what size should be a carriage beam

carrying, as in Fig. 54, three headers 1 5 feet long ;
two of

them located at the sides of an opening 6 feet wide, which

is placed at the middle of the width of the floor, and the

other header located at 3 feet from one of the side walls ?

As two of these headers are equidistant from the centre

of the floor, the one carrying the longer tail beams will pro-

duce the greater strain upon the carriage beam (Art. 253).

The distances from this header, therefore, are to be desig-

nated by m and ;/ (Art. 244-), while r and s are

to represent the distances from the other, and v and u

are to be the distances from the third header
;
the one at the

stairway.

Here m 7, w = 13, s = 7, t>=3, /=2O, ^=15,
c 2 - 8 and y = 70 ;

and by formula (260.) we have

70
140 +

'

7 =
22/20

2
~ x 7 [(* x 2 ' 8 x 13 x 20) + 15

= 133746

which is the required moment. An examination of Table

XVII. shows that the Trenton 9 inch 125 pound beam

will be more than sufficient for this case.

533. Carriage Beam with Three Headers, the Greatest

Strain being at Outside Header, for First-class Stores.

Here, with the headers located, as in Fig. 54, so that the one

causing the greatest strain in the carriage beam shall not be

between the other two, the rule is the same, with the excep-
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tion of the coefficient, as in the case last presented (form.

60.). Substituting therefore, in formula (260.),

320+--

(see form. 259.) in place of ---~L we shall have
22320

320 + --

1= n \%cnl+g(mn + J-v*)-\ (261.)

which is a rule for the moment of inertia required for a

rolled-iron carriage beam carrying three headers, in a first-

class store * the headers being placed, as in Fig. 54, so that

the one carrying the greatest strain shall not be between the

other two. (See Arts. 252 to 254.)

The example given in Art. 532 will serve to illustrate this

rule, for the two rules are alike except in the coefficient, as

above explained.

534. Carriage Ream with Three Headers, the Greatest

Strain being at Middle Header, for Dwellings, etc. If the

headers be located as in Fig. .56, so that the header causing

the greatest strain in the carriage beam shall be between the

other two (Arts. 260 and 264), then we have formula (194-)

(in Art. 432) appropriate to this case, except that it is for a

beam of rectangular section. To modify it to suit our pres-

ent purpose, we have only to substitute for bd 8
, /, F and

r, their respective values as in Art. 531, and we have

1=
-^\?*(b*l+g?)+gn(m*-it)-] (262.)

as a rule for the moment of inertia required for rolled-iron
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carriage beams carrying three headers, in an assembly room,

etc.
;
the headers so located that the one causing the greatest

strain shall be between the other two. (See Art. 264.)

535. Example. In a bank, having a floor of Phcenix

lo^ inch 105 pound rolled-iron beams, 20 feet long and

placed 5
- 59 feet from centres : Of what size ought a car-

riage beam to be which carries three headers, 16 feet long,

placed, as in Fig. 54, so that the opening in the floor at the

wall shall be 4 feet wide, and the other opening 5 feet

wide, and distant 6 feet from the other wall ?

The middle header in this case being the one which

causes the greatest strain in the carriage beam, the distances

from it to the two walls are to be called m and n. (See

Arts. 244 and 253.) The header carrying the tail beams,

one end of which rest upon the wall causing the next great-

est strain, the distances from it to the walls are to be called

r and s. The distances from the third header are v and

u. We have, therefore, m =
9, n = 11, s = 6, v 4,

120, g 16, y 105 and ^=5-59; and by formula

(262.} have

105
140 + -

5-59

16(11 x c/- 4*)]= 199-597

or the required moment is 199-597. From the moments in

Table XVII. we find that the Phcenix and Pittsburgh loj

inch 135 pound beams are a trifle stronger than the required

amount. The Trenton and Paterson ioj inch 135 pound
beams are still stronger than this. Being of the same weight,

either of the four named beams will serve the purpose.
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536. Carriage Beam with Three Headers, the Greatest

Strain being at middle Header,, for First-clas Stores. Take

a case where the header causing the greatest strain in the

carriage beam occurs between the other two, as in Fig. 56.

Formula (262.) is suitable for this case, except in its coeffi-

320 + J
cient. To modify it to suit our purpose, let -g~-

in

140 +
formula (261.) be substituted for -- in formula (262.)]

22320

and we have

y
320 +

-^

which is a rule for the moment of inertia for rolled-iron car-

riage beams carrying three headers, in first-class stores
;
the

header causing the greatest strain being between the other

two. (See Art. 264.)

The example given in Art. 535 will be sufficient to illus-

trate this rule, as the two formulas are alike, except in their

coefficients.



QUESTIONS FOR PRACTICE.

537. What is the moment of inertia for a beam having

a rectangular section ?

538. What is the moment of inertia for a beam of

I section, or of the form of rolled-iron beams ?

539._Which of the beams of Table XVII. would be ap-

propriate, when laid upon two supports 25 feet apart, to

sustain 15,000 pounds at the middle, with a deflection of

f of an inch ?

54-0. What weight could be sustained at 10 feet from

one end of a Trenton 10^ inch 105 pound beam, 25 feet

long between bearings, with a deflection of one inch ?

541. What weight uniformly distributed could be sus-

tained upon a Buffalo 9 inch 90 pound beam, projecting*

as a lever 1 5 feet from a wall (in which one end is firmly

imbedded), with a deflection of \ an inch ?

542. In the floors of a first-class store, constructed with

Phoenix 12 inch 125 pound beams, 3^ feet from centres :

Which of the beams of Table XVII. ought to be used for a

header 15 feet long, carrying one end of a set of tail beams

12 feet long ?



366 ROLLED-IRON BEAMS. CHAP. XIX.

543. In the floor of a first-class store, constructed with

12 inch 125 pound beams 2\ feet from centres : Which of

the beams of Table XVII. ought to be used for a carriage

beam 25 feet long between bearings, carrying, with 0-04

of an inch per foot deflection, a header 20 feet long, located

at 7 feet from one end of the carriage beam, and carrying

one end of a set of tail beams 18 feet long?

54-4. In the floor of a first-class store, constructed of

15 inch 150 pound beams 4^ feet from centres : What size

should be a carriage beam 25 feet long, which carries two

headers 19 feet long, one located at 9 feet from one wall,

and the other at 8 feet from the other wall ; the two head-

ers having an opening between them ?

545. In the floor of a bank, constructed of loj inch

105 pound beams 22 feet long, and placed 4 feet 4

inches from centres : Of what size should be a carriage beam

which carries three headers, 16 feet long, and located, as in

Fig. 56, so that one opening at the wall shall be 3 feet wide,

and the other opening 6 feet wide, with a width of floor of

6 feet between the two openings ?



CHAPTER XX.

TUBULAR IRON GIRDERS.

ART. 546. Introduction of the Tubular Girder. Dur-

ing the construction of the great tubular bridges over the

Conway River and the Menai Straits, Wales (1846 to 1850),

engineers and architects were moved with new interest in

discussions and investigations as to the possibilities of con-

structions involving transverse strains. Since the complete

success of those justly celebrated feats of engineering skill,

the tubular girder (Fig. 74), as also the plate girder (Fig. 67),

and the rolled-iron beam (Fig. 68),

all of which owe their utility to

the same principle as that involv-

ed in the construction of the tu-

bular girder, have become deserv-

edly popular. They are now

extensively used, not only by the

engineer in spanning rivers for

the passage of railway trains, but

also by the architect in the lesser,

but by no means unimportant,
work of constructing floors over FlG - 74-

halls of the largest dimensions, without the use of columns
as intermediate supports.

547. Load at Middle Rule Essentially the Same as

that for Rolled-Iron Beams. The capacity of tubular gir-
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ders may be computed by the rules already given. For

example : Formula (216.) affords a rule for a load at the

middle of a rolled-iron beam, in which (form. 213.),

whereof b is the width of top or bottom flange, and b
t

equals b, less the thickness of the two upright parts, or webs
;

d is the entire depth, and d, is the depth, or height, in the

clear between the top 'and bottom flanges, bd then is the

area of the whole cross-section, measured over all, while b
t
d

t

represents the area of the vacuity, or of so much of the cross-

section as is wanting to make it a solid. The numerical coef-

ficient in formula (216) is based upon a value of F equal to

62,000, which is the amount derived from experiments on

solid rolled-iron beams. For built beams, such as the tubular

girder, F by experiment would prove to be less, but the

formula (216) may be used as given, provided that proper

allowance be made in the flanges on account of the rivet

holes
; that is, taking instead of the actual breadths of the

flanges only so much of them as remains uncut for rivets.

548. Load at Any Point Load Uniformly Distributed.

For a load at any point in the length of a beam, formula

(222.) will serve, while for a load uniformly distributed, for-

mula (228) affords a rule. In general, any rule adapted to

rolled-iron beams will serve for the tubular or plate girder,

by taking as the areas of metal the uncut portion only.

54-9. Load at Middle Common Rule. The rules just

quoted are not those which are generally used for tubular

beams. Preliminary to planning the Conway and Britannia
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tubular bridges, the engineers tested several model tubes,

and from them deduced the formula

in which C is a constant, found to be equal to 80 when W
represents gross tons. Changing W to pounds, we have

2240 x 80 x a'd a'dW-
j -=i792oo-y-

This is for the breaking weight. Taking the safe weight

as 9000 pounds per inch, or of the breaking weight, we

have

- = 35840

and, as an expression for the safe weight, the area of the

bottom flange equals
Wl

a =
35840^

or, if instead of the above constant, 80, we put 80-357, we

shall have our constant in round numbers, thus,

Wl
a ' =

which is a rule for the area of the bottom flange of a tubular

girder, with the load at the middle; a' being in inches, /

and d in feet, and W in pounds. This rule is identical

with formula (265.), deduced in another manner.

550. Capacity by the Principle of Moments. Gene-

rally, the strength of tubular beams is ascertained by the

principle of moments or leverage. Sufficient material must be
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provided in the top flange to resist crushing, and in the bot-

tom flange to resist tearing asunder, while the material in the

web or upright part should be adequate to resist shearing.

551. Load at Middle Momeiat. We will first con-

sider the requirements in the flanges.

The leverage, or action of the power tending to break the

beam, as also that of the resistance of the materials, is repre-

sented in Figs. 8 and 9. When the load upon a beam is con-

centrated at the middle, it acts with a power of half the

weight into half the length of the beam (Art. 35), and the

tension thereby produced in the bottom flange is resisted

by a leverage equal to the height of the beam
; or, if d

equals the height of the beam between the centres of gravity

of the cross-sections of the top and bottom flanges, and T

equals the amount of tension produced in the lower flange

by the action of a weight W upon the middle of the beam,

then

Again, if k equals the pounds per square inch of section

with which the metal in the lower flange may be safely

trusted, and a' equals the area in inches in the bottom

flange, then a'k = T, and

= a'kd

Wl

which is a rule for the area of the bottom flange of a tubular

girder, loaded at the middle, and in which W and k are

in pounds, a is in inches, and d and / are in feet. (The
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area of the top flange is to be made equal to that of the

bottom flange. See Art. 456.) If k be taken at 9000,

as in Art. 549, then 4/ = 36000, and formula (265) becomes

identical with formula (264).

552. Example. What area of metal would be required

in the bottom flange of a tubular girder 40 feet long and

3 feet high, to sustain at the middle 75,000 pounds; 9000

pounds being the weight allowed upon one inch of the

wrought-iron of which the flanges are to be made ?

Here W =. 75000, / = 40, d 3 and k 9000 ;
and

we have, by formula (265),

75000 x 40
"-27.77

4 x 3 x 9000

or the area equals 27^ inches. This is the amount of metal

in addition to that required for rivet holes.

553. Load at Any Point. A load concentrated at any

point in the length of the beam acts with a leverage equal to

W y- (see Art. 56), and the resistance is Td=a'kd',

therefore

which is a rule for this case, as above stated, in which a
f

is

in inches, W is in pounds, and m, n, d and / are in feet.

554. Example. What amount of metal would be re-

quired in the bottom flange of a tubular girder 50 feet long
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and 3^ feet high, to sustain a load of 50,000 pounds at 20

feet from one end, when k = 9000 ?

Here W 50000, ;;/ = 20, n = 30, d = 3^, k 9000
and / = 50 ; and, by formula (266.),

50000 x 20 x 30*'= *- = 19-05
3^ x 9000 x 50

or the area should have 19 inches of solid metal, uncut by
rivet holes. The top flange should contain an equal amount.

(See Art. 456.)

555. Load Uniformly Distributed. For this load the

effect at any point in the beam is equal to that of half the

load, if concentrated at that point (see Art. 214); or, from

formula

which is a rule for the area of the bottom flange at any point

in its length, and in which a' is in inches, U is in

pounds, and m, n, d and / are in feet.

556. Example. In a tubular girder 50 feet long, 3^

feet high, and loaded with an equably distributed load of

120,000 pounds : What should be the area of the bottom

flange at the middle, and at each 5 feet of the length

thence to each support, k being taken at 9000 ?

Here U= 1 20000, d 3 ,
k = 9000 and / = 50 ;

and by formula (267.) we have

12OOOOMH
a

> .

2 x 3J * 9000 x 50
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When m = n 25, then

a' = 0-038095 x 25 x 25 = 23-81

or the area required in the bottom flange at mid-length is

23-81 inches.

When m = 20, then n = 30, and

a' = o 038095 x 20 x 30 = 22 86

or the required area at 5 feet from the middle, either way,

equals 22-J inches.

When m=i$, then n 35, and

a' = 0-038095 x 15 x 35 = 20-00

or, at 10 feet each side of the middle, the area should be

20 inches.

When m = 10, then n 40, and

a' = 0-038095 x 10 x 40 = 15-24

or, at 15 feet each side of the middle, the area should be

I5J- inches.

When m = 5, then n = 45, and

a' = 0-038095 x5 x45 = 8-57

or, at 20 feet each side of the middle, the area should be

84 inches.

557. Thickness of Flanges. In the results of the ex-

ample just given, it will be observed that the area of metal

required in the flanges increases gradually from the points of

support each way to the middle of the beam (see Art. 178).

In practice, this requirement is met by building up the

flanges with laminas or plates of metal, lapping on according
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to the computed necessary amount. In this process, the

plates used are generally not less than J of an inch thick.

For an example, take the results just found. Adding, say |
for rivet holes, and dividing the sum by the width of the

girder, which we will call 12 inches, there results as the

thickness of rnetal required,

at the middle, 2-31, say 2^ inches
;

"
5 feet from middle, 2-22,

"
2j

"

" 10 " "
1-95,

"
2

"
15

" "
1-48,

"
i

"

" 20 " "
0-83,

"
i inch.

558. ontruetion of Flanges. The girder of the last

article might be built with the two flanges in plates 12

inches wide, thus : Lay down first a plate one inch thick

the whole length of the girder. (With an addition for supports

on the walls, say -fa of the length, or 2^ feet at each end,

this plate would be 55 feet long.) Upon this place a plate

inch thick and 40 feet long ;
on this a plate \ inch

thick and 30 feet long; on this a plate J inch thick

and 20 feet long; and on this a plate \ inch thick and

10 feet long. The plates are all to extend to equal

length each side of the middle of the girder, and to be well

secured together by riveting. The longer plates, probably,

will have to be in more than one piece in length. Where

heading joints occur, a covering plate should be provided

for the joint and riveted.

559. Shearing Strain. A sufficient area having been

provided in the top and bottom flanges to resist the com-

pressive and tensile strains, there will be needed in the web

metal sufficient to resist only the shearing strain. This strain
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is, theoretically, nothing at the middle of a beam uniformly

loaded, but from thence increases by equal increments to

each support, at which place it is equal to one half of the

whole load (Arts. !72 and 174). For example : In the case

considered in Art. 556, the beam, 50 feet, long, carries

120,000 pounds uniformly distributed over its whole length ;

half of the load over half of the beam. At the centre, the

shearing strain is nothing ;
at 5 feet from the centre, it is

equal to -- of half the load, or is equal to 12,000 pounds ;

at 10 feet it is 24,000; at 15 feet it is 36,000; at 20

feet it is 48,000; and at 25 feet, or at the supports, it is

60,000 pounds, or half the whole load.

560. Thickiies of Wefo. If G be put for the shear-

ing stress, then

G = a'k'

in which a is the area in inches of the web at the point

of the stress, and k' is the effective resistance of wrought-
iron to shearing, per inch area of cross-section. If t equals

the thickness, and d the height of the web, then a' = td,

and the above equation becomes

G = k'td

* =w
which is a rule for the thickness of the web, at any point in

the length of the beam, and in which t and d are in

inches.

561. Example. What should be the thickness of the

web of the tubular girder considered in Art. 556, computed
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at every 5 feet in length of the girder ? If k' be taken at

7000 pounds, it will be but little more than three quarters of

9000, the amount taken in tensile strain (Art. 173),* and

taking d at, say 38 inches, we have, by formula (268.\

38 x 7ooo 266000

Therefore, when G equals 60,000 (Art. 559), then

60000
t = -z =0-225266000

When G equals 48,000, then t = ^,
- = o- 180. When

G equals 36,000, then =
-ig

= 0-135. As these are

the greater of the strains, and are all below the practical

thickness in girders, it is not worth while to compute those

at the remainder of the stations.

562. Conitruction of Web. From the results in the

last article, it appears that in this case the web is required, of

necessity, to be only a quarter of an inch thick in its thickest

part, at the supports. With an increase of load, the thick-

ness of the web would increase, for by the formula it is

directly as the load.

The thickness of web just computed is the whole amount

required in the two sides of the girder. In practice, it is

found unwise to use plates less than a quarter of an inch

thick. Following this custom, the two sides of the girder

* The resistance to shearing is generally taken at three quarters of the ten-

sile strength (see Haswell's Engineers' and Mechanics' Pocket Book, p. 485

Weisbach's Mechanics and Engineering, vol. 2, p. 77).
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taken together would be half an inch thick, more than twice

the amount of metal actually required. Hence it may justly

be inferred that in similar cases the plate beam (Fig. 67)

would be preferable to the tubular girder, as its web, being

single, would require only half the metal that would be re-

quired in the two sides of the tubular girder. It is also pre-

ferable for the reason that it is more easily painted, and thus

kept from corrosion. On the other hand, a tubular beam is

stiffer laterally. In the construction of the web, as a precau-

tion to prevent buckling, or contortion, it is requisite to pro-

vide uprights of T iron, at intervals of, say 3 feet on each

side, to which the web is to be riveted.

563. Floor Girder Area of Flange. If for U in for-

mula (267.), there be substituted its value in a floor, c'fl,

of which c' is the distance from centres between girders,

or the width of floor sustained by the girder, / is the length

of the girder between supports (both in feet), and / is the

load per foot superficial upon the floor, including the weight
of the materials of construction, then

which is a rule for the area of the bottom flange of a tubular

girder, sustaining a floor, and in which a' is in inches and

c'
t m, n and d are in feet.

664. Weight of the Girder. In estimating the load to

be carried by a girder, the estimate must include the weight
of the girder itself, It is desirable therefore to be able to



378 TUBULAR IRON GIRDERS. CHAP. XX.

measure its weight approximately before its dimensions

have been definitely fixed. The weight of a tubular girder

will be in proportion to its area of cross-section (which will

be approximately as the load it has to carry), and to its

length (form. 265^) ; 'or, when U is the gross load to be car-

ried, and / the length between bearings, then the weight

of the girder between the bearings is

in which n is a constant, and U is the whole load, includ-

ing that of all the materials of construction. The value of

n, when derived from so large a structure as that of the tu-

bular bridge over Menai Straits, is about 600, but from sev-

eral examples of girders from 35 to 50 feet long, in floors

of buildings, its value is found to be about 700. For our

purpose, then, we have n 700. If for U we put its

equivalent c'fl, as in Art. 563, then

(270.}
7oo

This is the weight of so much of the girder as occurs within

the clear span between the supports.

565. Weight of Girder per Foot Superficial of Floor.

The area of the floor supported by a girder is c'l. Dividing

K by this, the quotient will be /', the weight of the girder

per foot superficial of the floor, thus :

j^X. -72 - fL
J ~

c'l
~

c'l
~~

700

Now /, the total load per foot superficial of the floor, com-
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prises the superimposed load, the weight of the brick arches,

etc., and the weight of the girder /'; and, putting m for

the weight of all else save that of the girder, we have

f m +/' and, from the above,

1L~ (?

700

Im+fl

= =*

700 700

*
700

;oo/' a= lm

700/-/7 = lm

f =
700 /

which is a rule for ascertaining the weight per foot superfi-

cial of the floor due to the tubular girder.

566. Example. A floor, the weight of which, including

that of the superimposed load, is 140 pounds per superficial

foot, is carried upon a girder 50 feet in length between its

bearings. What additional amount per foot superficial

should be added for the weight of the girder?

Here / 50 and m 140, and by (27 1.\

_

700 50

or the weight to be added for the girder is lof pounds.
Then f= m+f 140+ lof = 150} pounds.

567. Total Weight of Floor per Foot Superficial, in-

eluding Girder. In the last article m represents the weight
of one foot superficial of a floor, including the load to be car-
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ried
; also, f represents the weight due to the girder ; or,

for the total load, f=m+f. Using for /' its value as

in formula (27 1.) we have

/ m+f =
7oo /

/= m(i -f 7 )J
\ 700 //

f=m
700-

700

700 /

and for m, taking its value as given in formula (232.\ it

being there represented by f,

which is the value of f, the total load per superficial foot

of the floors of assembly rooms, banks, etc., to be used in the

calculation of tubular girders ;
and taking the value of m,

as expressed in formula (233.) we have

/=(

which is the corresponding value of f for the floors of first-

class stores.

568. Girders for Floors ofDwellings, etc. If in formula

(269.), we substitute for / its value as in formula (272.), we

shall have

/ y\ 700 c'mn
a' = (ijp + f-Jife-r? x

3<V700-

which is a rule for the area of the bottom flange of a tubular

girder, supporting the floor of an assembly room or bank,

and in which a' is in inches, and c, /, c', m, n and d

are in feet.
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569. Example. In a floor ot 9 inch 70 pound

beams, 4 feet from centres: What ought to be the area of

the bottom flange of a tubular girder 40 feet long between

bearings, 2| feet deep, and placed 17 feet from the walls,

or from other girders ;
the area of the flange to be ascer-

tained at every five feet in length of the girder ?

Here y = 70, c = 4, /= 40, c' = 17 and d 2f.

Putting k at 9000 we have, by (2 74-),

, ( 70 \ 700 17
a =

( 140 + x - x mn
3x4/700-40 2X2f

The values of m and n are as follows:

At the middle, m = 20 and n = 20

"
5 feet from middle, m 15

" n = 25
" 10 " " " m = 10 " n = 30
"

1-5
" " " m = 5

" n = 35

from which the values of a' are as follows:

At the middle, a' = 0-05478 x 20 x 20 = 21 -91

"
5 feet from middle, a' = 0-05478 x 15 x 25 = 20-54

" 10 " " "
a' 0-05478 x 10 x 30 = 16-43

"
15

" " "
a' = 0-05478 x 5X35= 9-59

These are the areas of cross-section of the lower flange, at the

respective points named. The top flange is to be of the same

size. (See Art. 456.)

570. Girder for Floors of Firt-cla Storci. If, in for-

mula (2 74,), 320 be substituted for 140 (see form. 233.),

we shall have

7oo (
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which is a rule for the area of the bottom flange of a tubular

girder in a first-class store. [The area of the upper flange

should be made equal to that of the bottom flange (Art.

456).]

As this rule is similar to (274-}, the example given to

illustrate that rule will suffice also for this.

571. Ratio of Depth to Length, in Iron CJirder. In

order that the requisite strength in tubular girders may be

attained with a minimum of metal, the depth of a girder

should bear a certain relation to the length. To deduce a

rule for this ratio from mathematical considerations purely,

is not an easy problem. Baker in his work on the Strength
of Beams, p. 288, discusses the subject at some length. No
more will be attempted here than to obtain a rule based

upon some general considerations, and upon results tested

and corrected by experience.

572. Economical Depth. In the construction of tubular

girders for the floors of large buildings, it is found in practice*

to be unadvisable to use plates of a less thickness than one

quarter of an inch. If each side of the girder be a quarter

of an inch thick, then the least thickness for the web (using

this term technically) is a half inch. This is more than is

usually found necessary, in this class of girders, to resist

shearing (Art. 562). As the thickness is thus fixed, there-

fore the area of the web will be in proportion to its height,

and consequently it is advisable, in so far as the web is con-

cerned, to have the depth of the girder small
; but, on the

other hand, as the area of the flanges is inversely propor-

tional to the 'depth (see form. 65.), a reduction of the flanges

will require that the depth be increased. The cost of the

girder is in proportion to its weight, which is in proportion
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to its area of cross-section, and hence the desirability of

making both as small as possible.

The area of the flanges is, by formula (265.), in propor-

Wl
tion to -T7, and, as before shown, the area of the web will

be in proportion to its height ;
or the whole area will

Wl
be in proportion to -rr + d ;

and the problem is to find such
dk

a value of d as will make this expression a minimum.

Putting the differential of this equation equal to zero, we

find that the area of the cross-section of the beam will be a

minimum when

Wl

in which x is a constant, to be derived from experience,

and which, by an application of the formula to girders of

this class, is, when the weight is equally distributed, found

to be equal to 30. This reduces the formula to

and when for U its value c'fl is substituted

which is a rule for ascertaining the economical depth of a

tubular girder ;
a rule useful in cases where the depth is not

fixed by other considerations.

573. Example. In a floor where the girders are 50

feet long and placed 15 feet from centres, and where the

total load per foot superficial is 155 pounds: What would

be the most economical depth for the girders ?
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Here /= 50, c =15, /= 155 and k 9000, equals
the safe tensile power of wrought-iron ; and by (277.)

30 x 9000

or the depth should be 4 feet ;| inches. The depth may
be found by this formula, and then the area of flanges by
formula (2 74-) for assembly rooms, banks, etc. ; or, by for-

mula (275.} for first-class stores.

QUESTIONS FOR PRACTICE

574. In a tubular girder 50 feet long, 3 feet 4 inches

high, and loaded with 100,000 pounds at the middle : What

ought to be the area of each of the top and bottom flanges,

when the metal of which they are made may be safely

trusted with 9000 pounds per inch ?

575. In the same girder: What should be the area of the

top or bottom flange, if the load of 100,000 pounds be placed

at 15 feet from one end, instead of at the middle of the

beam?

576. In a tubular girder 50 feet long, 40 inches high,

and uniformly loaded with 200,000 pounds : What should

be the area of the top and bottom flanges, at every five feet

of the length of the girder?

577. In the same girder: What ought to be the thick-

ness of the web, at every five feet of the length of the girder,

to effectually resist the shearing strain ?
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578. In a tubular girder 40 feet long, 32 inches high,

sustaining, with other girders and the walls, the floor of an

assembly room, composed of 9 inch 70 pound beams 5

feet from centres, the girders being placed 16 feet from

centres : What should be the area of each of the top and

bottom flanges, at every five feet of the length, the metal in

the flanges being such as may be safely trusted with 9000

pounds per inch ?

579. In a floor, where the depth of the tubular girders

is not arbitrarily fixed, where the girders are 42 feet long

and placed 17 feet from centres, and where the total load

to be carried is 160 pounds per superficial foot : What
would be the proper depth of the girders, putting the safe

tensile strain upon the metal at 9000 pounds ?



CHAPTER XXL

CAST-IRON GIRDERS.

ART. 580. Cast-Iron Superseded by Wrouglit-Iron.

The means for the manufacture, of rolled-iron beams (Chapter

XIX.) have so multiplied within the last ten years that the

cost of their production has been much reduced, and as a

consequence this beam is now so extensively used as to

have almost entirely superseded the formerly much used

cast-iron beam or girder. Beams and girders of cast-iron,

however, are still used in some cases, and it is well to know

the proper rules by which to determine their dimensions.

A few pages, therefore, will here be devoted to this purpose.

581. Flanges Their Relative Proportion. In Fig. 75

we have the usual form of cross-section of cast-iron beams,

in which the bottom flange AB contains four times as much

metal as the top flange CD. It was

customary, fifty years since, to make

the top and bottom flanges equal. (See

Tredgold on Cast-Iron, Vol. I., Art. 37,

Plate I.)

Mr. Eaton Hodgkinson (who in 1842

edited a fourth edition of Tredgold's

first volume, and in 1846 added a

second volume to that valuable work)

made many important experiments on

cast-iron. Among the valuable deduc-
FIG. 75.

tions resulting from these experiments was this : that cast-
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iron resists compression with about seven times the force

that it resists tension (Vol. II., Art. 34) ; and that the form of

section of a beam which will resist the greatest transverse

strain, is that in which the bottom flange contains six times

as much metal as the top flange (Vol. II., Art. 138, page 440).

If beams of cast-iron for buildings were required to serve to

the full extent of the power of the metal to resist rupture,

the proportion between the areas of top and bottom flanges

should be as i to 6. If, on the other hand, they be

subjected only to very light strains, the areas of the two

flanges ought to be nearly if not quite equal. In view of the

fact that in practice it is usual to submit them to strains

greater than the latter, and less than the former, therefore

an average of the proportions required in these two cases

is that which will give the best form for use. Guided by
these considerations, it is found that when the flanges are as

i to 4, we have a proportion which approximates very

nearly the requirements of the case.

582. Flaiige ami Web Relative Proportion. The

web, or vertical part which unites the top and bottom

flanges, needs only to be thick enough to resist the shearing

strain upon the metal
;
a comparatively small requirement.

Owing, however, to a tendency in castings to fracture in

cooling, the thickness of the web should not be much less

than that of the flanges, and the points of junction between

the web and flanges should be graduated by a small bracket

or easement in each angle. (Tredgold's Cast-Iron, Vol. II.,

Art. 124.) The thickness of the three parts web, top flange

and bottom flange may with advantage be made in propor-

tion as 5, 6 and 8. Made in these proportions, the width ot

the top flange will be equal to one third of that of the

bottom flange ; for if w
t equal the width of the bottom

flange and w
tl

that of the top flange, t
t equal the thick-
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ness of bottom flange and tu that of the top, a, equal the

area of the bottom flange and aa the area of the top flange,

then a = wf t
and w

t

~~
; also, aa

= w
a
ta and wu

= -
;

and from these, remembering that a
t
= 4^, and that

/, :

t,
: : 6 : 8,

we have

or the width of the top flange equals one third of that of the

bottom flange.

583. Load at middle. Mr. Hodgkinson found, in his

experiments, that the strength was nearly as the depth and

as the area of the bottom flange. For the breaking weight,

IV, he gives

an expression for the relative values of the dimensions and

weight ;
in which W is the breaking weight at the middle,

/ the length of the beam, d its depth, a
t

the area of the

bottom flange, and c is a constant, to be derived from ex-

periment. This constant, when the weight was in tons and

the dimensions all in inches, he found to be 26. Taking the

weight in pounds and the length in feet, we have 4853^

for the constant, or say 4850, and therefore

jr=485ogX

When a is the factor of safety,

_
al



LOAD AT MIDDLE. 389

which is a rule for the area of the bottom flange of a cast-

iron beam, required to sustain safely a load at the middle.

The area of the top flange is to be made equal to
,
and

4

the thicknesses of the web and top and bottom flanges are to

be in proportion as 5, 6 and 8.

584. Example. What should be the dimensions of the

cross-section of a cast-iron beam 20 feet long between

supports and 24 inches high at the middle, where it is to

carry 30,000 pounds ;
with the factor of safety equal to 5 ?

Here W'

30000, 0=5, / = 20 and d= 24 ; and,

by formula (279.),

30000 x 5 x 20
'

=25 ' 773

or the area of the bottom flange should be 25! inches.

Now the thickness will depend upon the width, and this is

usually fixed by some requirement of construction. If the

width be 12 inches, then the thickness of the bottom flange

will be ^?=2 -IS, or 2\ inches full. The width of

the top flange will equal
- = 4 (see Art, 582), and

its thickness will be |//
= |-x2-i5=i.6i, or if inches

;

while the thickness of the web will be
-/,
=

|-
x 2 1 5 = I 34,

or i- inches.

585. Load Uniformly Distributed. A load uniformly
distributed will have an effect at any point in a beam equal
to that which would be produced by half of the load if it

were concentrated at that point (Art. 214). Therefore, if
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U equals the load uniformly distributed, %U W in for-

mula (879.), or

\Ual
a, =

4850^2?

Ual
a. = -

(280.)

which is a rule for cast-iron beams to carry a uniformly

distributed load.

This is precisely the same as the previous rule, except

in the coefficient. The example given in Art. 584 will

therefore serve to illustrate this rule, as well as the previous

one.

586. Load at Any Point Rupture. From formula

(78.) we have

Wl = ca,d

and, by a comparison of formulas (&1.) and

therefore, in the above, substituting this value of Wl, we

obtain

(*)

which is a rule for the area of the bottom flange at any point

in the length of the beam. The weight given by this rule

is just sufficient to rupture the bottom flange.
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587. Safe Load at Any Point. The value of c, for a

concentrated load, is (Art. 583) 4850, hence

4 = 4 i

C
~~

4850
~~

1212^

In formula (281.), substituting for : this value, and in-

serting a, the factor of safety, then

Wamn

which is a rule for the area of the bottom flange at any

point ; W, the safe load, being concentrated at that point.

588. Example. In a cast-iron beam 20 feet long be-

tween bearings : What should be the area of the bottom

flange at eight feet from one end, at which point the beam is

20 inches high and carries 25,000 pounds; the factor of

safety being equal to 5 ?

Here ^=25000, 0=5, m = S, n = 12, d2Q and

l2Q\ and by formula (282.)

25000 x 5 x 8 x i2

I2I2|X 20 X 2C

or the area should be 24f inches.

1212-j-X 20 X 20
24'74

589. Safe Load Uniformly I>itributed Effe<* at Any
Point. This effect at any point is equal to that produced by
half the load were it all concentrated at that point (Art.

214); therefore, if U represent the uniformly distributed

load, then by formula (282.)
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which is a rule for the area of the bottom flange of a cast-

iron beam at any point, to carry safely a uniformly dis-

tributed load. If the depth of the beam remain constant

throughout the length* then a
t

will vary as the rectan-

gle mn.

From formula (283.) we have

which is a rule for the depth of a beam at any point, to carry

safely a uniformly distributed load. If the area of the

bottom flange remain constant throughout the length, then

d will vary as the rectangle mn.

590. Form of Web. By the last formula, (284.), it will

be seen that when a
t ,

'

the area of the bottom flange, re-

mains constant throughout the length of the beam, then the

depths will vary in proportion to the rectangle of the two

segments, m and ;/, of the length. The corresponding
curve which may be drawn through the tops of the ordinates

denoting the various depths, is that of a parabola (Art. 212).

Instead of computing the depths at frequent intervals, there-

fore, it will be sufficient to compute the depth at the centre

only, and then give to the web the form of a parabola.

591. Two Concentrated Weight Safe Load. Formula

is appropriate for a concentrated load at any point in

the length of a beam, and formula (30.) is for two concen-

trated loads at any given points.

A comparison of these formulas shows that

~
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In Art. 586 we have

which is an expression for the breaking load. Inserting a,

the symbol of safety, in this expression, we have

mn
ca

t
d 4Wa ,

an expression for the safe load for cast-iron beams. If for

the second member of this equation there be substituted its

value as above,

we shall have

ca
/
d = 4a-(Wn+Vs)

an expression for two concentrated safe loads. From this

we have

A 1 1 J

Vs)

In Art. 587 we have =
=, therefore

c 1212%'

m
or

t
d= a -,-

( Wn + Vs)

m
a-(Wn+Vs)

which, in a beam carrying two concentrated loads, is a rule
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for the area of the bottom flange at the location of

of the loads, as in Fig. 76; and (see Art. 153)

one

Wm)
(286.)

which, in a beam carrying two concentrated loads, is a rule

for the area of the bottom flange at the location of F, one

of the loads, as in Fig. 76.

592. Examples. As an application of rules (285.) and

(286), let it be required to ascertain the dimensions of a cast-

iron girder to sustain a

brick wall in which there

are three windows, as in

Fig. 76, so disposed as to

concentrate the weight of

the wall into two loads, as

at W and V. Let /,

the length in the clear of

the supports, = 20, m 7,

n = 13, s = 6 and r = 14

feet, and the height of the girder at W and V equal 25

inches. Also, let the wall be 16 inches thick, and so much

of it as is sustained at W measure 250 cubic feet, at no

pounds per foot, or 27,500 pounds. Likewise, suppose the

weight upon V to equal 27,000 pounds.

Taking the factor of safety at 5 we now have, by
formula (285.\

FIG. 76.

a 5 x A K275QQ x 13) + (27000 x 6)] _
X 25

29-99
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or the area of flange is required to be 30 inches at W\

and, by formula (286.),

5 x A [(27000 x 14) + (27500 x 7)]
a, =.--1

----- = 2o-23
'

1212^x25

or the area of flange is required to be 28^ inches at V.

As the wall is 16 inches thick, the width of the bottom

flange should be 16 inches, and its thickness therefore

should be

^ = 1-875 inches at W

? 8 ? i

ft
. i 764 inches at V

From W to V the thickness is to be graded regularly

from 1-875 to 1-764; while from W to the end 'next

W it is to be equal to that at W, i-J-
inches thick, and

from V to the end next V it is to be if inches thick.

The width of the top flange is to be (Art. 582) one third

of the width of the bottom flange, or ig-
=

5-J-
inches. Pro-

portioning the three parts as 5, 6 and 8 (Art. 582), the

thickness of the top flange will be

-|
x if = i^ inches at V

I x i-J= i-J-f inches at W

The thickness is to be graded regularly between W and V,

and thence to each end of the beam the thickness is to be

that of W and V respectively. The web is to be of the

shape shown in Fig. 76, and is to be (Art. 582)

m \ x if = i^\- at V and

|xi|=iii at W

or, say i inches, averaging it throughout.
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593. Arclied Girder. A beam such as shown in Fig. 77

is known as the "
bow-string girder," in which the curved

part is a cast-iron beam of

the T form of cross-section,

and the feet of the arch

are held horizontally by a

wrought-iron tie-rod. This

beam, although very pop-
FIG. 77. ular with builders, is by no

means worthy of the confidence which is placed in it.

With an appearance of strength, it is in reality one of the

weakest beams used. Without the tie-rod its strength is

very small, much smaller than if the T section were reversed

so as to have the flange at the bottom, thus, J. (Tredgold,

Vol. II.
, pp. 414 and 415).

594. Tie-Rod of Arched Girder. The action of a con-

centrated weight at the middle of a tubular girder, in

producing tension in the bottom flange, is explained in

Art. 551. The tension in the tie-rod of an arched girder is

produced in precisely the same manner, and therefore the

rule {form. 265.) there given will be applicable to this case,

when modified as required for a uniformly distributed load
;

or, for W substituting its value, \U (Art.SQS). Then, upon
the presumption that there is sufficient material in the cast

arch to resist the thrust, we have

in which d is in feet. If d be taken in inches, then

Ul
(287.)
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which is a rule for the area of the cross-section of the tie-

rod in an arched girder ;
in which a

t
is the area of the

cross-section of the rod, U is the weight in pounds equally

distributed over the beam, / is the length in feet between

the supports, d, in inches, is the depth or versed sine of the

arc, or the vertical distance at the middle of the beam from

the axis of the tie-rod to the centre of gravity of the cross-

section of the cast-iron arch, and k
v
is the weight in pounds

which may safely be trusted when suspended from the end

of a vertical rod of wrought-iron of one square inch section.

If this latter be put at 9000 pounds, then

Ul

Now a
t

is the area of the tie-rod. The area of any circle

is equal to the square of its diameter multiplied by -7854, or

,== -7854^

and since, by formula (287.\

therefore

and

If k, the safe resistance to tension per inch, be taken at

9000- pounds, the rule becomes

which is a rule for the .diameter of the tie-rod of an arched

girder.
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595. Example. What should be the diameter of the

tie-rod of an arched girder, 20 feet long in the clear between

supports, and 24 inches high from the axis of the tie-rod to

the centre of gravity of the cross-section at the middle of the

arched beam
;

the load being 40,000 pounds equally dis-

tributed over the length of the beam ?

Here we have U = 40000, / 20 and ^=24; and

therefore, by formula (289.\

4712 x 24

or the diameter of the rod, with the safe resistance to tension

taken at 9000 pounds, should be 2f inches.

596. Substitute for Arched Girder. The cast-iron arch

of an arched girder serves to resist compression. Its place

can as well be filled by an arch of brick, footed on a pair of

cast-iron skew-backs, and these held in position by a pair of

tie-rods, as in Fig. 78.

FIG. 78.

To obtain a rule for the diameter of each rod, we have as

above, in Art. 594,

*,= -7854^
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This is for one rod. When a
t

is put for the joint area of two

rods, we will have

Comparing this with formula (287.\ we have

til
or

f X2 X 78540$

and when k is taken at 9000 (Art. 594)

Ul

(290.)
9425^

This is a rule in which D
f represents the diameter of each

of the two required rods.

For example, see Art. 595.

An arch of brick, well laid and secured in this manner,

will serve quite as well as the cast-iron arch, and may be

had at less cost. The best supports, however, to carry brick

walls are those made of rolled-iron beams, putting two or

more of them side by side and bolting them together. (See

Art. 489, form.
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QUESTIONS FOR PRACTICE.

597. What should be the dimensions of cross-section of

a cast-iron girder, 23 feet long between supports, and

27 inches high at the middle, at which point it is to carry

40,000 pounds ;
with 5 as the factor of safety ? The width

of bottom flange is 16 inches.

598. In a girder of the same length, height and width :

What should be the cross-section if the weight be 60,000

pounds and be uniformly distributed
;
the factor of safety

being 5 ?

599. In a girder of the same length, and of the same

height and width at 8 feet from one end, where it is required

to carry 50,000 pounds, with a factor of safety of 5 : What
should be the dimensions of cross-section ?

600. In a girder 25 feet long between bearings, carry-

ing a load of 40,000 pounds at 10 feet from one end, with

5 as the factor of safety, and having 30 inches area of cross-

section in the bottom flange : What should be the depth of

the girder ?

60 1. A girder, 25 feet long and 30 inches high, is re-

quired to carry, with 5 as a factor of safety, two weights,

one of 25,000 pounds at 8 feet from one end, and the other

of 30,000 pounds at 6 feet from the other end : What should
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be the dimensions of cross-section at each weight, the bottom

flange being 16 inches wide?

602. In an arched girder, 24 feet long between bear-

ings, with a versed sine or height of 30 inches from the axis

of the rod to the centre of gravity of the arched beam at

the middle, and with the load on the girder taken at 80,000

pounds uniformly distributed : What ought the diameter of

the tie-rod to be ?



CHAPTER XXII.

FRAMED GIRDERS.

ART. 603. Transverse Strains in Framed Girders. This

work, a treatise elucidating the Transverse Strain, would

seem to have reached completion with the end of the discus-

sion on simple beams
;
but when it is recognized that the

formation of a deep girder, by a combination of various

pieces of material, is but a continuation of the effort to gain

strength in a beam, by concentrating its material far above

and below the neutral axis, as is done in the tubular girder

and rolled-iron beam, it is clear that the subject of framed

girders is properly included within a treatise upon the

transverse strain. The subject of framed girders, however,

will here be discussed so far as to develop only the more im-

portant principles involved. For examples in greater vari-

ety, the reader is referred to other works (Merrill's Iron

Truss Bridges, and Bow's Economics of Construction).

604. Device for Increasing the Strength of a Beam.

The use of simple beams is limited to comparatively short

spans ;
for beams cut from even the largest trees can have

but comparatively small depth. The po\ver of a beam to

resist cross-strain can be considerably increased by a very

simple device. Let Fig. 79 represent the side view of a long

beam of wood, from which let ACDB, the upper part of the

beam, be cut. With the pieces thus removed, and the addi-

tion of another small piece of timber, there may be con-
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structed the frame shown in Fig. 80, which is capable of sus-

taining a greatly increased load. This increase will be in

FIG. 79.

FIG. 80,

proportion to the depth of the frame (Art. 583), and is ob-

tained here by increasing the distance between the fibres

which resist compression and those which resist tension. It

is upon this principle that roof trusses and bridge girders,

alike with common beams, all depend for their stability.

605. Horizontal Thrust. In a frame such as Fig. Bo,

the horizontal strains produced by the weight W are bal-

anced
; or, the tension caused in the tie CD is equal to the

compression caused in the short timber on which the weight

rests. If the tie CD were removed, it is obvious that the

weight W, acting through the two struts AW and BW,
would push the two abutments AC and BD from each

other, and, descending, fall through between them
;
unless

the abutments were held in place by resistance other than

that contained in the frame such, for instance, as outside

buttresses.
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From this we learn the importance of a tie-beam
; or, in

its absence, of sufficient buttresses. From this we may also

learn why it is that roof trusses framed without a horizontal

tie at foot so invariably push out the walls, when constructed

without exterior buttresses.

606. Parallelogram of Forces Triangle of Forces.

A discussion of the subject of framed girders can only be in-

telligently understood by those who are familiar with some

of the more simple and fundamental principles of statics.

One of these principles is known as the parallelogram of

forces, or the triangle of forces, and is useful to the archi-

tect in measuring oblique strains due to vertical and hori-

zontal pressures. Proof of the truth of this principle may
be found in most mathematical works. (See Cape's Math.,

Vol. II., p. 118
; chap, on Mechs., Art. 20.) In this chapter

its application to construction will be shown.

In Fig. 81, let the lines A W and BW represent the axes

of two timber struts, which, meeting at the point W
t

sus-

FIG. 81.

tain a weight, or vertical pressure, as indicated by the arrow

at W. Then, let the vertical line WE, drawn by any
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convenient scale, represent the number of pounds, or tons,

contained in the vertical weight at W. From E, draw

ED parallel with A W, and EC parallel with BW.
CWDE is the parallelogram of forces, and possesses this

important property namely, that the three lines WE, EC
and CW, forming a triangle, are in proportion to three forces ;

the weight at W, the strain in WB, and the strain in WA.

The same is true of the other triangle WED ; or, to des-

ignate more particularly, we have : as the line WE is to

the weight at W, so is the line CE, or WD, to the strain

in WB; and also : as the line WE is to the weight at

W, so is the line DE, or WC, to the strain in A W. In-

dicating the lines by the letters a, b and c
t

as in the fig

ure, we have

c : a : : W
/

: A,

in which A
t equals the strain caused by the weight W

t

through the line WA
;

and

c : b : : W, : B
t

B, =- W~

in which B
t equals the strain caused by the weight W

f

through the line WB.

60 7 B Line and Force in Proportion. The above pro-

portions hold good when the two lines A W and BW are

inclined at any angle, and whether they are of equal or of un-

equal lengths ; indeed, the principle is general in its applica-
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tion, for in all cases where the three sides of a triangle are

respectively drawn parallel to the direction of three several

forces which are in equilibrium, then the lengths of the three

lines will be respectively in proportion to the three forces.

608. Horizontal Strain Measured Graphically. In Fig.

81, and in the triangle WCE, draw, from C, the horizon-

tal line CF, or h
;

then we have the line
,

in proportion

FIG. 81.

to the line //, as Bn the strain in WB, is to H
t ,

the

horizontal strain ; or,

b : h :: B, : ff,-B^

and by substituting the value of B
t

in formula (292.) have

H, =: Bj- = W~ = W
' <b 'cb 'c

or the horizontal strain is measured by the quotient arising

from a division by the line c, of the product of the weight
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W
t

into the line h ; or,

c : h : : W, : H,

407

(293.)

This measures the horizontal strain at AB, or at W, for

it is the same at all points of such a frame, whatever the

angle of inclination of the struts, or whether they are inclined

at equal or unequal angles.

609. Measure ofAny Number of Forces in Equilibrium.

In Fig. 82, let AB be the axis of a horizontal timber, sup-

ported at A and B, and let AC, CD and DB be three

iron rods, with two weights R and P suspended from the

FIG. 82.

points C and D. The iron rods being jointed at A, C,

D and B, so as to permit the weights to move freely, and

thus to adjust themselves to an equilibrium, the whole frame

ABDC will be equilibrated.

From D erect a vertical, DH, and by any convenient

scale make DG equal to the weight P, and GH equal to

the weight R. From
,
draw GE parallel with CD, and

from H draw HE parallel with AC. The sides of the
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triangle GED are parallel with the three lines CD, DB
and DP, and consequently are in proportion as the strains

in the three lines CD, DB and DP. Again ; the sides of

the triangle HEG are parallel with the lines AC, CD and

CR, and consequently are in proportion as the strains in the

lines AC, CD and CR. From E draw EF horizontal.

Then the sides of the triangle FED, being parallel with the

lines BA, BD and BK, are in proportion to the strains in

these lines. Also, the sides of the triangle HEF, being

parallel to the lines AB, AC and AL, are in proportion

FIG. 82.

to the strains in these lines. Thus, in the triangles within

HDE, we have the measures of all the strains of the funicu-

lar or string polygon ABDCA ;
FE being the horizontal

strain, FD the vertical strain or load on BK, and HF
the vertical strain or load on AL.

610. Strain* in ait Equilibrated Truss. In Fig. 82 the

strains in the lines AC, CD and DB are tensile, while that

in AB is compressive. If the lines AC, CD and DB were

above the line AB, instead of below it, then these strains

would all be reversed ;
those which are tensile in the figure

would then be compressive, while that which is com-
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pressive would then be tensile
;
but the amount of strain in

each would be the same and be measured as in Fig. 82.

For example : Let Fig. 83 represent an equilibrated frame
;

the pieces A C, CD, DE, EF and FB suffering compression

FIG. 83.

from the vertical pressures indicated by the arrows at C, D,

E and F, while AB, a tie, prevents the frame from spread-

ing. Draw the vertical line LQ, and from B draw radiating

lines, parallel respectively with the several lines AC, CD,

DE and EF, and cutting the line LQ at the points Q, P,

O and M. Then the several lines BQ, BP, BO, BM and

BL will be in proportion, respectively, to the strains in

AC, CD, DE, EF and FB
;

and the lines LM, MO, OP
and PQ will be in proportion, respectively, to the -vertical

pressures at F, E, D and C ;
while the line LN will

represent the vertical pressure on B, and NQ that on A,

and the line NB the horizontal thrust in AB.

611. From Given Weigh!* to Construct a Scale of

Strains. The construction of the scale of strains LBQ, as

here given, is proper in a case where the points C, D, E
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and F are fixed, and the weights and strains are required.

When the weights at C, D, E and F, with their horizontal

distances apart, and the two heights RC and UF, are

given ; then, to find the scale of strains, and incidentally the

heights of the points D and E, proceed thus : From B

FIG. 83.

draw BQ parallel with AC, make the vertical QL equal,

by any convenient scale, to the sum of the weights at C, D,

E and F, and upon this vertical lay off in succession the

distances LM, MO, OP and PQ, equal respectively to

the weights at F, E, D and C. Then, the several lines

BL, BM, BO, BP and BQ will, by the same scale,

measure the several strains in BF, FE, ED, DC and CA,

and BN will measure the horizontal strain.

612. Example. In constructing Fig. 83, the weights

given are 11,899 pounds at F, 4253 pounds at E, 4464

at D and 11,384 at C\ being a total of 32,000 pounds.

The distances AR, RS, etc., are successively 8, 13, 20,

24 and 13; in all 78 feet. The height RC = 15, and

UF =
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With these dimensions all laid down as in Fig. 83, draw

BQ parallel with AC. Draw the line LQ vertical, and at

such a distance from B as that its length shall, by a scale

of equal parts, be equal to the total load on the four points

C, D, E and F ; or to a multiple of the total load. For

example : a scale of 100 parts to the inch will be convenient

ki this case, by appropriating 4 parts to the thousand

pounds. The 32,000 pounds require 32x4=128 parts for

the length ol the line LQ, and the several other weights

and distances require as follows :

LM 4 x 1 1 899 = 47 - 596

MO 4 x 4-253 17-012

OP 4 x 4-464= 17-856

PQ = 4x 11-384 ^ 45.536

The sum of these,

LQ = 47-596 4- 17-012 +'17-856 + 45-S36 = 128

as before. Therefore, draw LQ at such a distance from B
that it will, by the scale named, equal 128 parts. On this

line lay off the distances LM = 47-596, MO = 17-012, etc.,

as above given. Join B with each of the points P, O and

M. These lines give the directions of the lines CD, DE
and EF

; therefore, draw FE parallel with BM, ED
parallel with BO, and DC parallel with BP.

By applying the scale to the lines radiating from B, the

strains in the several lines AC, CD, etc., will be shown.

BQ, by the scale, measures 80 parts, therefore \- = 20
;

or the strain in A C is 20,000 pounds.

BP measures 45 parts, and -\
5 = n; or the strain in

CD is 11,250 pounds.

BO measures 38, and $- = 9^ ; or the strain in

DE is 9500.

BM measures 39, and -3
T
9- = 9! ; or the strain in

EF is 9750.
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(5o ^

BL measures 69.5, and =17-375; or the strain

in FB is 17,375.

BN measures 37-5. and -- = 9.375; or the horizon-

tal strain is 9375 pounds.

Also, as LN measures 58, therefore ^- = 14,500, equals

the load on B \ and as NQ measures 70, therefore,

-\-
= 17,500, equals the load on A ; and the two loads A

t

and B, together equal 17500 + 14500 = 32000, equals the

total load.

In practice the diagram should be large, for the accuracy
of the results will be in proportion to the size of the scale,

as well as to the care with which it is drawn and measured.

The size above taken is large enough for the purposes of

illustration merely, but in practice the diagram should be

drawn at a scale of 12 feet to the inch
; or, still better, at 8

feet. (See Art. 615.)

613. Horizontal Strain Measured Arithmetically. In

the last article, directions were given for locating the line

LQ, Fig. 83. This line may be located more precisely by
arithmetical computation, and the horizontal thrust be thus

denned more accurately than is there done. In Fig. 84,

showing parts of Fig. 83 enlarged, we have the triangles

ACR and BFU, the same as in Fig. 83.

The triangle ACR, as stated (Art. 612), has a base of 8

and a height of 15. Make A Y equal 10, and draw YZ
vertical. We now have this proportion,

AR : RC : : A Y : YZ or

8 : 15 :: 10 : YZ = --^ = 18-75o

Again ; triangle BFU, as stated (Art. 612), has a base of 13

and a height of 2oJ. Make BX equal 10, and draw XV



MEASURING HORIZONTAL STRAIN. 413

vertical. We have now this proportion,

BU\ UF \\BX\XV or

10 x 2oJ
13 :2oi:: 10 : XV = = 15-577

Thus we have the two angles at A and B comparable,

for, with a common base of 10, the one at A has a height

of 18-75, while the one at B is 15-577. The two triangles

may now be put together at the line BU. Extend the verti-

cal line VX to W, make XW equal to YZ = 18-75, and

join W and B. Then the triangle BXW equals the

triangle A YZ, and BW is parallel with AZ.

FIG. 84.

The problem now is to locate the point N, so that the

vertical LQ drawn through N shall be equal, by any

given scale, to the total of the loads at C, D, E and F.

To do this we have
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BX x NLBN:NL::BX:XV =

BN:NQ::BX:XW=

BN
BXx NQ
BN

By addition we have

_
BXxNL BXxNQ _ BX(NL + NQ)

By the diagram, XV+XW= VW, and NL + NQ = LQ,

and therefore

. BN
VW: BX-.: LQ: BN =

or

BX^LQ
VW

~

The total load is 32,000, for which we may, putting one for

a thousand, make LQ equal to 32 ; and, since VW equals

YZ+ VX = 18-75 + 15-577 = 34-327. and BX = 10, we

have
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defining accurately the horizontal thrust BN as 9-322,

or 9322 pounds.

Vertical Pressure upon the Two Points of

Support. This pressure was shown in Art. 612 by the

diagram, but may be more accurately determined by arith-

"metical computation, as follows : In the last article the

horizontal thrust BN was shown to be 9322 pounds. We
have the proportion

BX\ XV :: BN : NL
15-577 x 9-322

10 : 15- 577 1:9-322 :NL = -
^--^

- = 14-521

or the vertical strain upon the support B is 14,521 pounds.

To find that upon the support A we have

BX : XW :: BN : NQ
18-75x9.322

10 : 18-75 :: 9-322 : NQ = - - = 17.47910

or the vertical strain upon the support A is 17,479 pounds
and the two, 17479 + 14521 = 32000, equals the total load.

615. Strains measured Arithmetically. The resulting

strains in Fig. 83, as obtained by scale in Art. 6(2, are close

approximations, and are near enough for general purposes.

The exact results can be had arithmetically, as in Arts. 613

and 614. For example : In Art. 612 the horizontal thrust

was found by scale to be 9375, while in Art. 613 it was

more accurately defined by arithmetical process to be 9322.

So, also, the portions of the total load borne by the two
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supports, A and B, were found by scale to be 17,500

and 14,500, respectively, while in Art. 614 they were accu-

rately fixed at 17,479 on A and 14,521 on B. A carefully

drawn diagram at a large scale will generally be sufficient

for use, but it is well, in important cases, to compute the

dimensions also. When both are done, the scale measure-

ments serve as a check against any gross errors in the com-

putations.

In Art. 612 the strains in the several timbers are given,

as ascertained by scale. By the rules for computing the

sides of a right-angled triangle (the 47th of first book of Eu-

clid), the several strains, as represented by BL, BM, BO,

etc. (Fig. 83), may be found arithmetically. The following list

shows the results by this method, side by side with those by
scale :

By Scale. By Computation.

BL = 17,375 and 17,256

BM 9,750
"

9,684

BO 9,500
"

9,464

BP 11,250
'

11,138

BQ -- 20,000
"

19,810

616. Curve of Equilibrium Stable and Unstable.

When the positions of the supporting timbers AC, CD, DE,

etc. (Fig. 83), are regulated in accordance with the weights

upon the points C, D, E, etc., and, as shown in Art. 611,

the frame is in a state of equilibrium ;
and a curve drawn

through the points A, B, C, D
y etc., is called the curve of

equilibrium. When the several weights are numerous, are

equal, and are located at equal distances apar.t ; or, when

the load is uniformly distributed over the length of the

frame, this curve is a parabola. In these cases, if the rise
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be small in comparison with the base, the curve is nearly

the same as a segment of a circle, and the latter may be

used without serious error. (Tredgold's Carpentry, Arts. 57

and 171.)

The pressures in an equilibrated frame act only in the

axes of the timbers composing the frame, and these carry

the effects of the several weights on, from point to point,

until they successively arrive at A and B, the points of

final support. A frame thus balanced is not, however,

stable, for if subjected to additional pressure, however small,

at any one of the points of support, it is liable to derange-

ment ; and if so deranged it has no inherent tendency to

recover itself, but the distortion will increase until total

failure ensues. A frame thus conditioned is therefore said

to be in a state of unstable equilibrium ; while a frame of

suspended pieces, as in Fig. 82, is said to be in a state of

stable equilibrium, since, if disturbed by temporary pressures,

it will recover its original position when they are removed.

617. Trussing- a Frame. The tendency to derangement
and consequent failure, .in a frame such as Fig. 83, can be

counteracted by additional pieces termed braces, located in

any manner so as to divide the inclosed spaces into triangles.

For example: it may be divided into the triangles ACS,

CSD, DST, DTE, RTF, TFU and UFB. If these additional

pieces be adequate to resist such pressures as they may be

subjected to, and be firmly connected at the joints, the frame

will thereby be rendered completely stable. Treated in

this way the frame becomes a truss, from the fact that it has

been trussed or braced.

618. Forces in a Truss Graphically Measured. When
a frame is divided into triangles, as proposed in the last

article, sometimes three or more pieces meet at the same
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point. In such a case, owing to the complexity of the

forces, it becomes difficult to trace, and, by the parallelogram

of forces, to measure them all. Professor Rankine, in his

"
Applied Mechanics," somewhat extended the use of the

triangle of forces in its application to such cases. It was

afterward more fully developed and generalized by Professor

J. Clerk Maxwell in a paper read before the British Asso-

ciation in 1867, and by him termed ''Reciprocal Figures,

Frames and Diagrams of Forces ;" and Mr. R. H. Bow,

C.E., F.R.S.E., in his
" Economics of Construction," has

simplified the method in its use, by a system of reciprocal

lettering of lines and angles. By Professor Maxwell's

method, the forces in any number of pieces converging at

one point are readily determined. The principle involved

is very simple, and is this : Construct a closed polygon, with

lines parallel to the direction of, and equal in length to, the

amount of the forces which in the framed truss meet at any

point. A system of such polygons, one for each point of

meeting of the forces, so constructed that in it no line

representing any one force shall be repeated, is termed a

diagram offorces.

619. Example. Let Fig. 85 represent a point of con-

vergence of parts of a framed truss, and Fig. 86 be its

corresponding diagram of forces, in which latter the lines

are drawn parallel to the lines in Fig. 85. Designate a line

in the diagram in the usual manner, by two letters, one at

each end of the line, and indicate the corresponding line in

Fig. 85 by placing the same two letters one on each side of

the line. For instance, the line AB of 86 is parallel with that

line of 85 which lies between the spaces A and B
;
and so of

each of the other corresponding lines. In Fig. 86 the lines are

in proportion to each other, respectively, as the forces in the

corresponding lines of Fig. 85. Thus if AD (86), by any scale,
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represents the force in the line between A and D (85), then

will the line AB equal the force in the line between A and

B; and in like manner for the other lines and strains.

620. Another Example. Let Fig. 87 represent the axial

lines of the timbers of a roof truss, and its two sustaining

piers, and let Fig. 88 be its corresponding diagram of forces.

FIG. 85.

The truss being loaded uniformly, the three arrows (87)

one at the ridge and one at the apex of each brace repre-

sent equal loads. Let these three loads be laid down to a

suitable scale on the line FJ (88), one extending from F
to G, another from

*

G to ff, and the third from H to

y. The half of these, or FE, is the load sustained on one of

the supports of Fig. 87, and the other half, EJ, is the load

upon the other support. In Fig. 87 a letter is placed in each

triangle, and one in each partly-enclosed space outside of

the truss. Each line of the figure is to be designated by
the two letters which it separates; thus, the line between

A and E is called line AE, the line between A and B
is called line AB, etc. In Fig. 88 the corresponding lines

are designated by the same letters ; the letters here being,

as usual, at the ends of the lines. Also, it will be observed

that while in the diagram any point is designated in the

usual way by the letter standing at it, it is the practice in
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the frame to designate a point by the several letters which

cluster around it
;
for example, the point of support FAE

(Fig. 87). The diagram, Fig. 88, is constructed by drawing a

line parallel with each of the lines in Fig. 87. Thus the three

FIG. 87.

FIG. 88.

forces converging in Fig. 87 at FAE, the left-hand point of

support, are EF, FA and AE\ and in Fig. 88 the lines EF,

FA and AE, drawn parallel with the corresponding lines

of Fig. 87, form the triangle EFA. Taking the forces at
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point GBAF, 87, we find them to be AF, FG, GB and

BA, and drawing, in 88, lines parallel with these, we obtain

the quadrangle AFGBA. Again, in 87 the forces at point

GBCH are BG, GH, HC and CB, and drawing, in 88,

lines parallel with these, we obtain the closed polygon
BGHCB. At point HCDJ (87) the forces are CH, HJ, JD
and DC, and, in 88, drawing the corresponding lines pro-

duces the quadrangle CHJDC. In 87 the forces at point

JED, the right-hand support, are DJ, JE and ED, and

in 88, the corresponding lines produce the triangle DJE.
In 87, at point ABODE, we have the five forces EA, AB,
BC, CD and DE, and, in 88, the corresponding lines give

the closed polygon EABCDE. This completes the dia-

gram of forces, Fig. 88, in which the several lines, measured

by the same scale with which the three loads were laid off on

FJ, are equal to the corresponding forces in the similar

parts of Fig. 87.

621. Diagram of Force. In this manner the diagram
of forces may be drawn to represent the strains in a framed

truss, by carefully following the directions of Art. 618
;
com-

mencing by first laying down the forces which are known;
from which the ones to be found will gradually be determined

until the whole are ascertained.

62 2 Diagram of Forces Order of Development.

When more than two of the forces converging at any one point

are undefined in amount, the diagram can not be completed.

Thus, where three forces converge it is requisite to know one

of them. Of four forces, two must be known. Of five forces,

three must be known.

In constructing a diagram, the first thing necessary is to

establish the line of loads, as FJ in Fig. 88, then to ascertain

the portion of the total load which bears upon each of the
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points of support, AEF and JED (Art. 56) (one half on

each when the load is disposed symmetrically), and, with this,

to obtain the first triangle FEA. From this proceed up the

rafters, or to where the points of convergence have the

fewest strains, leaving the more complex points to be treated

later. In this way the most of the forces which affect the

crowded points will be developed before reaching those

points.

623. Reciprocal Figures. By comparing Figs. 87 and

88, we see that the lines enclosing any one of the lettered

spaces in the former are, in the latter, found to radiate from

the same letter. The space A (87) has for its boundaries the

lines AF, AB and AE, and these same lines in 88 radiate

from the letter A. The space E (87) has for its enclosing

lines EF, EA, ED and EJ, and these same lines are

found to radiate from the point E (88). Thus the diagram

(88) is a reciprocal of the frame (87).

624. Proportions in a Framed Girder. In order to

treat of the method of measuring strains in trusses, we have

digressed from the main subject. Returning now, and refer-

ring to the relations existing between a girder and a simple

beam, as in Arts. 603 to 605, we proceed to develop the

proportion in a girder, between the length and depth.

A girder, as generally used, serves to support a tier of

floor beams at a line intermediate between the walls of the

building, and when sustained by posts at points not over

12 to 15 feet apart, may be made of timber in one single

piece. But when a girder is required to span greater dis-

tances than these, it becomes requisite, by some contrivance,

to increase its depth, in order to obtain the requisite

strength. An increase of depth, however, may interfere

with the demand tor clear, unobstructed space in rooms so
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large as those in which girders are required. To prevent

this interference, the depth of the girder should be the least

possible ; although diminishing the depth will increase the

cost ; for the cost will be in proportion to the amount of

material in the girder, and this will be in proportion to the

strains in its several parts, and the strains will be inversely

as the height. For economy's sake, therefore, as well as for

strength, the girder should have a fair depth; modified, how-

ever, by the demand for unobstructed space.

Where other considerations do not interfere to prevent

it, the depth of a framed girder should be from y
1

^ to
-J-

of

the length ;
the former proportion being for girders 25 feet

long, and the latter for those 125 feet long. If these two

rates be taken as the standard rates, respectively, of two

girders thus differing in length 100 feet, and all other

girders be required to have their depths proportioned to

their lengths in harmony with these standards, their rates

will be regularly graduated. In order to develop a rule

lor this, let the two standards be reduced to a common

denominator, or to ^ and / . If their difference, -%, be

divided into 100 parts, each part will equal

i i

24 x 100 2400

and will equal the difference in rate for every foot increase

in length of girder; for the two standards are 100 feet

apart. The scale of rates thus established is for lengths of

girder from 25 to 125 feet, but it is desirable to extend

the scale back over the 25 feet to the origin of lengths.

To do this, we have for the difference in rates for this 25

feet, 25 x ^Vo = *Hhr = ?V Deducting this from T
L (= -&),

the rate at 25 feet, we have -fa -fa
=

-fa, the rate be-

tween depth and length at the origin of lengths (if such a

thing were there possible). Now if to this base of rates we
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add the increase (y^V^ of the length) the sum will be the

rate at any given length. As an example: What should

be the rate, by this rule, for a girder 125 feet long ? For

this the difference in rate is 125 x -^fa = ^WV = -fa. Adding
this to the base of rates, or to -fa, as above, and the sum

^ + ^_ II
_

}
the required rate. This is one of the

standard rates. The other standard may be found by the

rule thus, 25 x ^Vir = ^j-jfo
=

-fa. Adding this to the base

-A gives -ft-
= T^ the standard rate. We have therefore

for the rate at any length

r = . -L +_!_/= -!Zi_
1

96 24OO 24OO 24OO 24OO

r =
2400

This gives the rate of depth to length, and since the depth

is equal to the rate multiplied by the length, therefore

2400

d = (994.)
24OO

in which d is the depth between the axes of the top and

bottom chords, and / is the length (between supports), both

being in feet.

This rule will give the proper depth of a girder, and may
be used when the depth is not fixed arbitrarily by the cir-

cumstances of the case. (See Art. 572.)

625. Example. What should be the depth of a girder

which is 40 feet long between supports?

By formula (294.),

+ 40)x 4x) =
2400
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or the economical depth is 3 feet and 7 inches, measured

from the middle of the depths of the top and bottom chords.

Again : What should be the depth of a girder which is

100 feet long in the clear between supports ? By (294>\

(175 + 100) x IPO
a = -- ---- 1 1 -450^

2400

or the depth between the axes of the chords should be n
feet 5f inches.

A girder 125 feet long would by this rule be 15 feet

7-J- inches, or
-J-

of its length, in depth ;
while a girder

25 feet long would be 2 feet and i inch deep between

the axes, or T̂ of the span.

626. Trussing, in a Framed Girder. One object to be

obtained by the trussing pieces the braces and rods is to

transmit the load from the girder to the abutments. The

braces and rods forming the trussing may be arranged in a

great variety of ways (see Bow's Economics of Construction),

but that system is to be preferred which will take up the

load of the girder at proper intervals, and transmit it to its

two supports in the most direct and economical manner.

Just which of the great number of systems proposed will

the more nearly perform these requirements it will perhaps
be somewhat difficult to determine, but the one in which the

struts and ties are arranged in a chain of isosceles triangles

is quite simple, and offers advantages over many others. It

is therefore one which may be adopted with good results.

627. Plaaniiis a Framed Girder. After fixing upon
the height (Art. 624), the next point is as to the number of

panels or bays. These should be of such length as to afford

points of support at suitable intervals along the girder, and

the rods and struts should be placed at such an angle as will
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secure a minimum for the strains in the truss. To set the

braces and ties always at the same angle, would result in fur-

nishing points of support at intervals too short in the girders

of short span, and too long in those of long span. So also, if

the width of a bay be a constant quantity, there would be

too great a difference in the angles at which the rods and

struts would be placed. To determine the number of bays,

so as to avoid as far as practicable these two objections first,

we have the number of the bays directly as the length of the

truss and inversely as the depth, arid, second (to vary this pro-

portion as above suggested), we may deduct from this result

a quantity inversely proportioned to the length of the girder.

Combining these, we have, n being the number of bays,

/ 120 /
n ~j

--
d c

and by substituting for d its value as in formula

I 120-1

2400

2400 1 20 /
"

175 + '
~

~~c~

in which / is the length of the girder in feet, and c is a

constant, to be developed by an application to a given case.

To this end we have, from the last formula,

1 20 /_ 2400

=l7sT7-

I2O /

2400

With n =4-5 and /= 20, we have
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12020 100
C = -- - =-

;

- = 12 SO7
2400 _ 12-3084.5

175 + 20
~~

or, say c = 12-8
;

and with this value

I75 + / 12-8

which is a rule for determining the number of bays in a truss,

when not determined arbitrarily by the circumstances of the

case, and when the height of the girder is obtained as in

formula (294-}. In the resulting value of ;/, the fraction

over a whole number is to be disregarded, unless greater

than
,

in which latter case unity should be added to the

whole number.

628. Example. What should be the number of bays in

a truss 80 feet long ?

Here / = 80, and, by the formula,

2400 1 20 80 _ 2400 40n=
i75 + 8o~~T^~8~

:

"255" ~~~i2T8
-

or the required number of bays is six
; disregarding the

decimal 287 because it is less than .

629. Example. How many bays are required in a

girder no feet long?

Here /= no, and, by formula

2400 1 20 no
= ~

or, adding unity for the decimal -64, the number required

is 8.
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630. Number of Bays in a Framed Oirder. According
to the above rule, the number of bays or panels required in

framed girders of different lengths is as follows :

Girders from 20 to 59 feet long should have 5 bays.
"

59 85
" " " " 6 "

85
"

107
" " " "

7
"" "

85
"

107
" " " "

IQy
tt I2y

u u 8

" "
127

"
146

" " " "
9

In cases where the length exceeds 120 feet, the quantity

of the formula to be deducted
f
- -

j
becomes a nega-

V 12-5 i

tive quantity, and, since deducting a negative quantity is

equivalent to adding a positive one, the result may be added,

thus:

120144 24

631. Forces in a Framed Oirder. Let Fig. 89 represent

the axial lines of a framed girder, or the imaginary lines

passing through the axes of the several pieces composing the

frame. Let the load, equally distributed, be divided into six

parts, one of which acts at the apex of each lower triangle.

We may notice here that in a truss with an even number of

lower triangles, as in Fig. 89, there is an even number of

loads, one half of which are carried by the struts and rods to

one point of support, and the other half to the other support.

Thus the load PQ, at point PEFGQ, is sustained by the

top chord, and by the strut EF. The portion passing down

this strut is carried by the rod DE up to the top chord,

and thence, together with the load OP, at point OCDEP,
down by the strut CD to the bottom chord. This accu-

mulated load is carried by the rod BC up to the top chord,
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and thence, with the addition of the last load AO, at

ABCO, finally reaches, through the strut AB, the point

of support for that end of the truss. The three weights on

the other side are in like manner conveyed to MNT, the

other point of support. We here see the manner in which,

in a framed girder upon which the load is uniformly dis-

tributed, one half is carried by the trussing pieces to each

point of support.

632. Diagram for the above Framed Girder. Fig. 90 is

a diagram constructed as per Arts. 619 and 620, and repre-

sgpfo-.iK^v^ ,
trie sides ot which measure the torc&> 5. 89.

s converging at the point BCDT of 89. The next ir

er is the point OCDEP. Of the five forces concentrat

here, we already have, in Fig. 90, three, PO, OC an

'. To find the other two, draw from D the line D
-allel with the line DE of 89, and from P draw PL

rallel with line PE of 89. These two lines will meet a

and complete the polygon POCDEP, which measures

3 forces in the lines concentrating at point OCDEP
oceeding now to the point DEFT of Fig. 89, we find foui

ces, two of which, TD and DE., are already deter

ned. For the other two, draw from E the line El

rallel with EF in 89, and from T, TF parallel with th

e TF of 89. These two lines meet in F and complete
3 polygon TDEFT, which measures the forces in the

es converging at the point DEFT of Fig. 89. The nex

order is the >oint PEFGQ in 89, where five IWe

FIG. 90.

To construct this diagram, we proceed as follows: Upon the

vertical line AN lay off the several distances AO, OP,

PQ, QR> RS and SN\ each equal by any convenient
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scale to one of the six equal loads resting upon the top of 89.

The load at the apex of the triangle ./?, or point ABCO
(89), is placed from A to O in 90. The load OP, at point

OCDEP (89), is placed from O to P in 90 ;
and so on with

the other loads. The other lines of Fig. 90 are obtained by

drawing them parallel with the corresponding lines of Fig.

89, as per directions in Art. 618. Commencing at the point

ABT (89), we draw (in 90) three lines parallel with the direc-

tion of the forces at that point. The first of these is the ver-

tical pressure upon the point of support ABT, which in

this case equals one half the total load, or AQ, or AT of
eu .. uvj UC UCLlUCLCci i Q /

~ " ~

re quantity, and, since deducting a negative quantity

[uivalent to adding a positive one, the result may be adde

us:

120

631. Force in a Framed Girder. Let Fig. 89 represen

^ axial lines of a framed girder, or the imaginary line

ssing through the axes of the several pieces composing th

ime. Let the load, equally distributed, be divided into si:

rts, one of which acts at the apex of each lower triangle

e may notice here that in a truss with an even number o

wer triangles, as in Fig. 89, there is an even number c

ids, one half of which are carried by the struts and rods t

e point of support, and the other half to the other suppon
FIG. 90.

Fig. 90. Next, from T, draw the horizontal line Tfi
y
and

from A, the inclined line AB, parallel with the brace

AB of 89. These two lines meet at B, and we have the tri-

angle ABT, representing the three forces converging at.

the point of support ABT. For the four forces at the point
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ABCO in 89, we proceed as follows : We already have the

forces AO and AB. From B in 90, draw BC parallel

with the rod BC of 89 ;
and from O in 90, draw OC par-

allel with OC of 89. These two lines intersect at C, com-

pleting the polygon ABCOA, the sides of which are in pro-

portion as the forces in the several lines converging at the

point ABCO of Fig. 89. Proceeding to the point BCDT
(Fig. 89), we find, of the four forces converging there, that two

are already drawn, 777 and BC. From C draw CD

parallel with the brace CD of Fig. 89 ;
and from T draw

TD. These two lines will meet at D and complete the poly-

gon TBCDT, the sides of which measure the forces in the

lines converging at the point BCDT of 89. The next in

order is the point OCDEP. Of the five forces concentrat-

ing here, we already have, in Fig. 90, three, PO, OC and

CD. To find the other two, draw from D the line DE
parallel with the line DE of 89, and from P draw PE

parallel with line PE of 89. These two lines will meet at

E and complete the polygon POCDEP, which measures

the forces in the lines concentrating at point OCDEP.

Proceeding now to the point DEFT- of Fig. 89, we find four

forces, two of which, TD and DE., are already deter-

mined. For the other two, draw from E the line EF
parallel with EF in 89, and from T, TF parallel with the

line TF of 89. These two lines meet in F and complete
the polygon TDEFT, which measures the forces in the

lines converging at the point DEFT of Fig. 89. The next

in order is the point PEFGQ in 89, where five lines con-

verge. The forces in three of these we have already namely,
QPy

PE and EF. Draw from F a. line parallel with the

line FG of 89, and from Q a line parallel with QG -of

89. These two intersect at G and complete the polygon
QPEFGQ, which gives the forces in the lines around the

point PEFGQ of Fig. 89.
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In this last proceeding we meet with a peculiarity. The

line FG has no length in Fig. 90. It commences and ends

at the same point, since G is identical with F. This

seems to be an error, but it is not. It is correct, for an ex-

amination of Fig. 89 will show that the two inclined lines

meeting at the foot of the triangle G do not assist in carry-

ing the weights upon the top chord, and may therefore, in so

far as those weights are concerned, be dispensed with, so

that the space occupied by the three triangles F, G and

H may be left free, and be designated by one letter only in-

stead of three. In place of five, there are in fact only four

forces meeting at the point PEFGQ, and these four are rep-

resented in Fig. 90 by the polygon QPEFQ.
The above analysis is in theory strictly correct, and yet

in practice it is not so, for in such cases as this there is al-

ways more or less weight on the lower chord at the middle

point. If nothing more, there is the weight of the timber

chord itself, and this should be considered.

In Art. 634 a truss with weights at the points of each

chord will be found discussed, and the facts as found in prac-

tice there developed.

The construction of one half of the diagram (Fig. 90) has

now been completed. The other half is but a repetition of

it in reversed order, and need not here be shown in detail.

In drawing the lines for the latter half, it will be seen that the

point H is identical with the point F, and that K and

M coincide respectively with D and B.

633. Gradation of Strains in Chords and Diagonals.

In considering the forces shown in Ftg. 90, we find that those

in the chords increase towards the middle of the girder, while

the forces in the diagonals decrease towards the middle.

Thus, in Fig. 90, of. the lines representing the upper chord,
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PE is longer than OC, and QG is longer than PE, in-

dicating a corresponding increase in the lines OC, PE and

QG of 89. So in the lower chord, we have a successive in-

crease of forces, as seen in a comparison of the lengths of the

lines TB, TD and TF of Fig. 90, representing the chord

at the several bays B, D and F of Fig. 89. The diagonal
lines AB, CD and EF in 90 show decreasing forces in

the diagonals AB, CD and EF in 89 decreasing towards

the middJa/to a point beyond the middle of tnYi/P remem-

ber wVphe remainder of Fig. 92 may be traced for thevledge

of thjf 9I ^ by a continuance of the process used in tracing
6 di-

ag"ol half. Since, in this instance, the loading and plan of the

dialer are symmetrical, and hence the several forces in

2S of one half of the girder respectively equal to those

3 other half, the lines of the diagram as laid down for

e may be used for the other half. Let

Fi rre-

sp< -am,
635. Gradation of Strains in Chord and Diagonal .

we the
e gradation of the forces in Fig. 92 may (as was remai

. Art. 633) be observed in the diagonals representing

.28 KA, AB, BC, CD and DE, which diagonals decrt

, m the end towards the middle of the girder ; and also
\.

. ^ lines representing the chords A U, BL, CT, DM an(

which gradually increase from the end towards the
pai

J

idle.
two

J.

In tl ^~d being symmetrically ui^^ ,
1- cwo

parts are equal, or KU = UV. From U and K draw lines

parallel to the corresponding lines UA and KA (91). These

will meet at A and complete the triangle of forces for the

point A UK of Fig. 91. From A in 92 draw the Une AB,
and from L the line LB. These meet at B and com-

plete the polygon KLBAK for the forces at the point

KABL of 91. Starting from U, set off upon the vertical
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line KV the several distances UT, TS, SR and RQ,

respectively equal to the several loads UT, TS, SR and

RQ as found in 91. For the forces at the point ABCTU,
draw the line BC from B, and the line TC from T,

each parallel with its corresponding line in 91. These lines

meet at C and complete the polygon ABCTUA, which

gives the forces converging in the point UABCT.

occupied by the three triangles .
,

y be left free, and be designated by one letter OL

of three. In place of five, there are in fact only

3S meeting at the point PEFGQ, and these four are i

nted in Fig. 90 by the polygon QPEFQ.
The above analysis is in theory strictly correct, and }

>ractice it is not so, for in such cases as this there is i

s more or less weight on the lower chord at the midd

t. If nothing more, there is the weight of the timb'

id itself, and this should be considered.

i Art. 634 a truss with weights at the points of eac

3 will be found discussed, and the facts as found in pra

ythere developed.

/The construction of one half of the diagram (Fig. 90) h

jw been completed. The other half is but a repetition

/ in reversed order, and need not here be shown in deta

(n drawing the lines for the latter half, it will be seen that t

oint H is identical with the point F
y
and that K a

Coincide re
-

FIG. 92,

For the point LBCDM, draw from C the line CD,

and from M the line MD^ each parallel with its corre-

sponding line in 91. These lines, meeting in D, complete

the polygon MLBCDM^ which gives the forces surround-

ing the point LBCDM. For the point TCDES, draw from

D the line D, and from 5 the line SE, respectively
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parallel with the corresponding lines of Fig. 91. They will

meet at E and complete the polygon TCDEST, which

measures the forces around the point TCDES. For the

point MDEFN
y
draw from E the line EF, and from N

the line NF, parallel with EF and NF of 91 ;
and they,

meeting at F, will complete the polygon MDEFNM, thus

giving the forces converging at the point MDEFN.
The correspondence of lines in the two figures has now

been traced to a point beyond the middle of the framed gir-

der. The remainder of Fig. 92 may be traced for the other

half of 91, by a continuance of the process used in tracing the

first half. Since, in this instance, the loading and plan of the

girder are symmetrical, and hence the several forces in the

lines of one half of the girder respectively equal to those in

the other half, the lines of the diagram as laid down for the

one may be used for the other half.

635 a Gradation of Strains in Chords and Diagonals.

The gradation of the forces in Fig. 92 may (as was remarked

in Art. 633) be observed in the diagonals representing the

lines KA, AB, BC, CD and DE, which diagonals decrease

from the end towards the middle of the girder ;
and also in

the lines representing the chords A U, BL, CT, DM and

ES, which gradually increase from the end towards the

middle.

636. Strains Measured Arithmetically. Let Fig. 93

represent a framed girder, in which the loads are symmetri-

cally placed, and where L is put for the load on each point

of bearing of the upper chord, and N for that suspended
at each bearing point of the lower chord. Let a represent

the vertical height of the girder, c the length of a diagonal,

and b the base of the triangle formed with c and a.
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637. Strains in the Diagonals. To analyze these, we

commence at the middle of the girder. There being an odd

number of loads upon the upper chord, one half of the

Fin. 93-

central one, Z, is carried at Q, one of the points of sup-

port, and the other half at F, the other point. The effect

of this upon .the brace MC may be had from the relation of

the sides of the triangle abc, for

a : c : : \L : L
2a

2a : c : : L : L
2a

D

equals the strain in the diagonal ; or, when W equals the

vertical load, equals JZ,

D = W-
a

(296.)

The vertical effect of this at M is JZ-, the same as it is

at C. This amount, added to the suspended load N at M,

equals \L + A7
", equals the total vertical force acting at M.

This is sustained by the lines MK and BM, the latter

standing at the same angle with MK as did MC. Hence

the effect upon the diagonal is
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equals the strain on the diagonal BM
;

and the vertical

effect at M is equal to \L-\- N. Adding this to the load on

the top chord at B, the sum, fZ+TV, is the total load at

B, and it is supported by the forces in the lines PB and

BC, constituting, with the weight, three forces, acting in

the directions of the three sides of the triangle abc. The

effect in the diagonal BP is therefore, as before, the load

into the ratio
,

or (IL + N) . The vertical effect of this
a V2 } a

at P is equal to the vertical effect at B, or %L + N. Add-

ing to it the load N at P, their sum, J-Z 4- 2N, is the total

vertical effect at P
; and, as before, the effect of this on the

diagonal AP which carries it is (fZ + 2N), with a vertical

effect at A of fZ 4- 2N, the same as at P. Adding the

load Z, at A, the sum, L+2N, equals the total vertical

pressure at A. This is sustained by the forces in the lines

QA and AB, which, with the weight, act in the direction

of the sides of the triangle abc, and therefore the effect in

the diagonal, as before, is (-4-2^), while the vertical
a

effect of this at Q is equal to the same effect as at A, or

Thus, the loads on half the girder have, one by one, been

picked up and brought along, step by step, until they are

finally received upon Q, their point of support at one end

of the girder.

It will be observed that this accumulated load, %L+2N,
coincides with the sum of the loads as seen upon one half of

the figure, that is, to the 2-J- loads on the top chord and the

two loads suspended from the bottom chord.

638. Example. Let it be required to show the strains

in the diagonals of a framed girder 50 feet long, of five

bays and 4^ feet high.
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Here b, the base of the measuring triangle, is equal to

|~o
=

5, and a, its height, equals the height of the girder,

equals 4-5 ;
and <:,

the hypothenuse of the right-angled

triangle, is therefore

c 1/20-25 + 25 =6-7268

The load L upon each point of the upper chord is 10,000

pounds, while N, the suspended load at each point of the

bottom chord, is 2500 pounds.

FIG. 93.

The strain upon the diagonals is, by formula (296.\

The load on CM is %L, and therefore the strain in the

diagonal CM is

c 6-7268
D, = L~ = loooo x r = 74741 pounds.

The strain in the diagonal MB is

c ,6-7268Da ($L + M) - = (5000 + 2500)
- = 1 121 it pounds.
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The strain in the diagonal BP is

c ,6-7268D3 (f-Z, +N )
- =

(i 5000 + 2500)
- - = 261 59! pounds.'a 4-5

The strain in the diagonal PA is

D&
= (4Z, + 2N) - =

(i 5000 + 5000)
- = 29896! pounds ;

a 4*5

and the strain in the diagonal A Q is

D5
= (%L + 2N) -

(25000+ 5000)
- - = 448451 pounds.

639. Strains in tlie L,ower Chord. From the measuring

triangle abc of Fig. 93 we have

a : b :: W : H

H=W- (MT-)
a

in which H is the strain in the horizontal lines due to W
the weight ;

and with this formula we may ascertain the

horizontal forces in the chords of the girder.

First. In the lower chord. At the point Q we have, for

W in the formula, one half the total load, or (JZ, + 2N\
and therefore

equals the horizontal strain in QP.

For the next bay, PM, we have, for W, the same amount,

plus that caused by the thrust in the strut BP, plus that

due to the tension in the rod AP. These three amounts



440 FRAMED GIRDERS. CHAP. XXII.

are respectively fZ, + 2N, f + N and fL + 2N, and

their sum is

(f -f 27V) + (f 4- JV) f (f -f 2^0 = JT = -y- + 5^

equals the total weight causing- horizontal strain in PM.
From this, the horizontal strain in PM is

..

For the third, or middle bay, MK, we have the weight
the same as for PM, together with that coming from the

1 .

FIG. 93.

thrust of the strut CM, and from the tension of the rod BM.

These three weights are ty-L -f $N> \L and %L+ N, or

together,

(V + $N) + \L + (f + N)~ W=L + 6A?

and for the horizontal strain in MK we have

This completes the strains in the lower chord, for those of

the other end are the same as these.

640. Strains in the Upper Chord. For the first bay,

AB, there are two compressions, namely: that due to the

reaction from the strut AQ, and that from the tension in
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the rod AP. The weight causing thrust in the strut is

equal to half the total load, or fZ 4- 27V, and the weight

causing tension in the rod is fZ + 2N
; or, together, we

have for the weight 4Z 4- 47V; and for the compression in

AB,

H' = (AL 4- 47V) d

For the second bay, BC, we have this same thrust, plus

that due to the reaction of the strut PB, plus that due to

the tension in the rod BM. The three weights are 4Z + 4/V,

fZ + N and -JZ 4- N, and their sum is

(4Z 4- 47V) 4 (fZ 4- TV) 4- (JZ 4- TV) = 6Z 4- 67V

and the horizontal compression in BC is

77" = (6Z + 6yV)-
i?

641. Example. What are the horizontal strains in a

girder of five bays, it being 50 feet long and 4^ feet high,

and having 10,000 pounds resting upon each bearing point

of the upper chord, and 2500 pounds at each point of sus-

pension in the lower chord?

Here, in the measuring triangle abc, b
-f-^-
=

5 and

a = 4- 5 ;
from which - = - = i4. Hence, for each hor-

a 4-5
izontal strain, we have

Now, in the lower chord, we have, as in Art. 639, for the

bay QP, the weight

W= L-\-2N and, therefore,

Hf
= -1/ [(2^- x 10000) + (2 x 2500)] = 33333-} pounds ;

equals the horizontal tension in QP.
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For the next bay, PM, we have for the weight, as per
Art. 639,

W= V1 7- f 5^ and, therefore,

-ft = -V-KSi x 10000) + (5 x 2500)] = 75000 pounds ;

equals the horizontal tension in PM.
For the third, or middle bay, MK, for the weight, as

per Art. 639, we have

W= ifL -f 6N and, therefore,

Hs = -V-[(6i x i oooo) -h (6 x 2500)] = 88888| pounds ;

equals the horizontal tension in MK.
This completes the work for the lower chord, as the ten-

sions in the other half are the same as those here found for

this.

In the upper chord the weight causing compression in the

first bay, A, is, as per the last article,

W 4L i 4N and, therefore,

H' = -[(4>< 10000) + (4x2500)] = 555551 pounds;

equals the horizontal compression in AB.

For the next bay, BC, for the weight causing compres-

sion we have, as per last article,

W 6L -f 6N and, therefore,

H" =W6 x 10000) -f- (6 x 2500)] = 83333^ pounds ;

equals the horizontal compression in BC.
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This completes the strains for the upper chord. Tabu-

lated, these several horizontal strains stand thus :

For the lower chord :

In QP and JF the strains are 33,333^ pounds.
" PM " KJ " " tk

75,ooo

" MK " strain is 88,888|
"

For the upper chord :

In AB and DE the strains are 55,555| pounds.
" BC " CD " " "

83,333^

To test the correspondence of these results with those

shown by the graphic method in Figs. 91 and 92, the student

may make diagrams with the given figures at a scale as large

as convenient, giving to L and N the proportions above

assigned them, namely, L 4.N, and making the bays with

a base of 10 and a height equal to 4-5. The results ob-

tained should approximate those above given, in proportion

to the accuracy with which the diagrams are made.

642. Resistance to Tension. Only in so far as tension

is incidental to the transverse strain would it be proper to

speak of the former in a work on the latter. In a framed

girder, the lower chord and those diagonals which tend

downwards towards the middle of the girder are subject to

tension. The better material to resist this strain is wrought-

iron, and this, in the diagonals at least, is usually employed.

The weight with which this material may be safely trusted

per square inch of sectional area varies according to the

quality of the metal, from 7000 to 15,000 pounds. Ordi-

narily, it may be taken at 9000 pounds, but when the metal
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and the work upon it are of superior quality, it is taken at as

much as 12,000, or even higher in some special cases This

is the safe power of the metal per square inch of the sectional

area. Let k equal this power, W equal the load to be

carried, and A the sectional area of the bar, then

Ak= W
W

A = -
(298.)K

As an application of this formula, take the case of the di-

agonal AP, Fig. 93 ;
the strain in which is 29,896^ pounds.

Putting k = 9000, we have

29896!A = - -^ = 3-3218
9000

or the rod should contain 3^- inches in its sectional area.

Referring to a table of areas of circles, we find that the rod,

if round, should be a trifle over 2 inches in diameter, or, if

a flat bar 4 inches wide, it would need to be
-J-

of an inch

thick, since 4x1 = 3-333.

^
The above is for the diagonals. The chords are usually

of wood. When so made, the value per square inch sec-

tional area may be taken at.one tenth of the ultimate tensional

power of the materials as given in Table XX. Since a chord

is usually compounded of three or more pieces in width, and

of lengths less than the length of the chord, it is necessary

to see that the area of material determined by the use of for-

mula (298.) is that of the uncut material, or of the uncut sec-

tional area at all points in the length. Thus, were the pieces

so assembled as to have no two heading joints occur at the

same point in the length, or so near each other that the re-

quisite bolts for binding the pieces together could not be in-

troduced between the two joints, then the uncut sectional
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area would be equal to that of all the pieces in the width ex-

cept one. Should two joints occur at or near one point in

the length, then the sectional area of all but two pieces in

width must be taken
;
and so on for other cases.

Where care is exercised in locating the joints, the allow-

ance for joints, bolt holes, and other damaging contingencies

may be taken as amounting to as much as the net size
; or,

ordinarily, the net size should be doubled. Then for the

total sectional area we have

.
IO X 2 2O

~^r\

20

(299.)

in which T is the ultimate resistance to tension, as found

in Table XX.
As an illustration, take the case of the lower chord of Fig.

93, which, at the middle bay, has a horizontal strain of 88,889

pounds. From Table XX. we have the resistance to tension

of Georgia pine equal to 16,000 pounds. By formula (299.)

2oW 20x88880
A = ~- - -~ =in inchesT 16000

or the area should be not less than 1 1 1 inches. The chord

may be 10 x 12 120 inches, and may be compounded of

three pieces in width a centre one of 4x 12 and two out-

side pieces of 3x12 each.

643. Resistance to Compression. The top chord of a

framed girder, and the struts or diagonals directed down-
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ward towards the points of support, are in a state of com-

pression.

The rules for determining- the resistance to compression
in posts or struts are numerous, and their discussion has oc-

cupied many minds. The theory of the subject will not be

rehearsed here. For this the reader is referred to authors

who have made it a special point, such as Tredgold, Hodg-
kinson, Rankine, Baker, Francis and others.

For short columns, the resistance is, approximately, in

proportion to the area of cross-section of the post. As the

post increases in length, the resistance per square inch of

cross-section gradually diminishes.

In framed girders, the struts, and also the chords, when

properly braced against lateral motion, are in lengths com-

paratively short, and hence the resistance which the material

in them offers is not much less than when in short blocks.

Baker* gives as the strain upon posts

=<:(<

L*

Reducing this expression and changing the symbols to agree

with those of this work, we have

in which / equals the ultimate resistance of the post per

inch of sectional area, C equals the ultimate resistance to

compression of the material when in a short block, e the

extension of the material per foot due to flexure, within

*
Strength of Beams, Columns and Arches, by B. Baker, London, 1870,

p. 182.



RESISTANCE TO COMPRESSION. 447

the limits of elasticity, as found in Table XX., and d is the

dimension in the direction of the bending. This in a post

will be the smaller of the two, or the thickness. Let h rep-

resent this thickness and be substituted in the above for d\

then r = j is the ratio of the length to the thickness or
It

smallest dimension of the cross-section
;

/ and h both

being taken of the same denomination, either inches or feet.

The safe limit of load for posts is variously estimated at

from 6 to 10. Putting a to represent this, and taking

C for the ultimate resistance, as in Table XX., we have for

the safe resistance

f __ _ (300.)-

and when W equals the load to be carried, and A equals

the sectional area, we have

W
Af= W or A =

-j

and, by substituting for /) its value, as in (300.),

W
A =

C

(S01}

As an application, let it be required to find the area of

the Georgia pine strut AQ in Fig. 93, the strain in which

is (Art. 638), say 45,000, and the length of which is 6-73.

The ratio r can not be assigned definitely in the formula,

as h is unknown. From experience, however, a value

may be assigned it approximating its true value, and after

computation, if the result shows that the assigned value

deviates materially from the true value, then a nearer ap-
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proximation may be made for a second computation. The

ratio in the case now considered is probably about equal to

12. We will take it at this amount for a trial. Take, from

Table XX., the values of 6^=9500 and e = 0-00109, for

Georgia pine. Make a, the factor of safety, equal to 10.

The value of W is 45,000. Then, by formula (301.),

10 [i +(f x 0-00109 x I2
2

)] x 45000A = - - = 58-521
9500

or the area should be 58^ inches.

Having taken the ratio at 12 we should have the thick-

ness in inches equal to the length in feet, or 6-73. Divid-

ing the area 58-521 by this gives a quotient of 8-696 as

the breadth. The dimensions of the piece are 6f x 8f . If

it be desirable to have the thickness greater than here given,

then a second trial may be had with a less ratio.

644. Top Chord and Diagonals Dimensions. By
transformation of formula (301.) a rule may be arrived at

which shall define the breadth of a diagonal or post exactly.

Let A = hb, and let //, the thickness, bear a certain

relation to b, the breadth
;
or nh = b, n being a con-

stant assumed, at will (for example, if n = 1-2, then

i-2/i b).
Then A = nh2

. Putting also for r its value

TO/

(/ being taken in feet) we have

h2n =
C

Ctfn = Wa +

Ctfn = Wak3 + (| x I2
2

Wael*}

Ctfn - Wah3 = | x 12' Wael*

_
Cn 2 C



TOP CHORDS AND DIAGONALS. 449

Completing the square and reducing gives

Cn \ 2Cn) 2Cn

Let W~- be called G
;

then we have
2Cn

2Cn

and by substitution the above formula becomes

h = V432Gel'+G' + G

which is a rule to ascertain the thickness or smallest diame-

ter of a strut or post, and in which / is in feet and the

other dimensions are in inches.

This rule, owing to its complication, will be found to be

tedious in practice. For this reason, formula (301.) ordi-

narily, for its greater simplicity, is to be preferred ; although,

from the necessity of assuming the value of r, a second

computation may be required.

645. Example. What is the value of h, the thickness

of the strut at AQ, *Fig. 93 ;
the length being 6-73, and

the force pressing in the line of its axis being 45,000

pounds.

Putting 10 for a, the factor of safety, putting 1-2

for n, the factor defining the relation of the breadth to the

thickness, and taking from Table XX. the values of the con-

stants C and e for Georgia pine, we have F= 45000,

a = 10, *? 0-00109, /=6-/3, C =9500 and #=i-2.
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By formula (302.) we have

r
a 45000 x 10

G = W^- = 19-7372Cn 2 x 9500 x i -2

Then, by formula (303.\

x 19-737 x 0-00109 x
) 4- 19-737 + 19-737

= 6 '943

or the thickness of the strut is required to be, say 7 inches.

As nh = b, therefore

/; = I -2 X 6-943 = 8-332

equals the breadth of the strut
;
and since hb = A, there-

fore

A = 6-943x8-332 = 57-849

equals the area of the strut ;
a fraction less than was before

found by formula (301.). That value would have been the

same as this had the value of r been correctly assumed.

Its exact value is 11-632 instead of 12, the amount there

taken.

64-6. Derangement from Shrinkage of Timber*. Ow-

ing to the natural shrinkage of timber in seasoning, the most

carefully framed girder will settle or sag more or less, pro-

vided adequate measures are not taken to prevent it. The

ends of the struts press upon the inside of the chords, while

the iron rods have their bearing at the outside. The conse-

quent diminution in height of the girder will be equal to the

shrinkage of both the top and bottom chords, and the rods

which at first were of the proper length will be found cor-

respondingly long.

By screwing up the nuts upon the rods as the shrinkage

progresses, the sagging may be prevented ;
but this would

be inconvenient in most cases. It is better, in constructing

the girder, to provide bearings of metal extending through
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the depth of each chord, and so shaped that the strut and rod

shall each have its bearing upon it. The shrinkage will then

have no effect upon the integrity of the frame.

64-7. Framed Girder with Unequal Loads Irregularly

Placed. Let Fig. 94 represent such a case, wherein A, B
and C are the loads upon the top chord, and D and

E the loads on the bottom chord, all located as shown. As

FIG. 94.

in other cases, the first requirement is to know the reactions

at the two supports R and P. In a girder symmetrically
loaded this involves but little trouble, as the half of the total

load equals the reaction at each support. In our present

case, we can not thus divide the load, since the reactions are

not equal. To obtain the required division of the total load,

we must consider each of the several weights separately,

dividing it between the two supports according to its dis-

tances from them. Thus, putting m and n for the dis-

tances of the load A from the two supports, the portion of

A bearing upon R is shown by formula (#.) (placing A
for W),

in which A, the weight, is multiplied by n, its distance
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from the opposite support, and divided by /, the length or

span. In like manner, each of the other weights may be

divided, and the portion bearing upon each support found.

Putting the letters o, p, q, r, s, t, n and v to repre-

sent the distances shown in the figure, we have, as the total

effect upon one of the supports,

An Bp Cr Dv Et* = +
7-

+ T + T +T
R =

and for the total effect upon the other support,

_ Am + Bo + Cq + Du + Es
(SO5 ^

Adding these two formulas, we have as the total effect upon
both supports,

A(m + ri) + B(o+p)+C(q + r) + D(u + v) + E(s + f)
./v. ~T~ Jr

Here the sum of the two quantities within each parenthesis

is equal to / the length, and consequently

_

J\.-\- r ~
/

R+P= A+B+C+Di E

or the sum of the reactions of the two supports is equal to

the sum of all the weights. In this we have proof of the

accuracy of the two formulas (304.) and (305.).

648. Load upon Each Support Graphical Represen-

tation. The value of R in formula (304*) may be readily
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found, either arithmetically or graphically. The formula for

one weight, R< = Aj (d), gives R,lAn, or two equal

rectangles. Having three of these quantities, /, A and n,

the fourth quantity, R may be graphically found thus :

In Fig. 96 let AB, by any convenient scale, equal n.

Draw AC at any angle with AB, and equal in length to

FIG. 96.

/. Lay off AD equal to A. Join B with C, and from

D draw DE parallel with CB. AE will equal Rt the

required quantity, for, from similar triangles, we have

AC : AB :: AD : AE
I : n : : A : R, = Aj

To obtain the value of R for all of the weights, proceed as

in Fig. 97, in which the parallel lines FL, GM, HN, JO

H J S l< R U TCL

FIG. 97.

w

and KP are each equal to /, the span RP of Fig. 94.
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From F lay off upon FL, the first of these lines, the

distance FV equal by scale to the weight A of Fig. 94,

and from F on line FW place FQ equal to n. Con-

nect Q with L. From V draw VG parallel with

LQ. FG will represent R,.

From G draw GM parallel with FL. Make GV
equal to the weight B (94), and GR equal to /. Con-

nect R with M, and from V draw VH parallel with

MR. GH will represent Rs .

H J S K R U TO.

FIG. 97.

From H draw //N parallel with FL. Make

equal to the weight C (Fig. 94), and HS equal to r.

Connect 5 with N, and parallel with NS draw VJ.

HJ will represent R3 .

In like manner, with the weight D and distance v of

Fig. 94, obtain ^A" equal to Rt ; and with the weight E
and distance t obtain KU equal to R5 .

We now have the line FU equal to the sum of

equals that portion of the total load on the girder which

presses upon the support R.
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Similarly, the amount of pressure upon the support P

may be obtained. The two, R and P, should together

equal the sum of the weights A, B, C, D and E.

649. Girder Irregularly Loaded Force Diagram.

Having accomplished the division of the total weight, we

FIG. 94.

H

E

FIG. 95.

may now construct -upon the same scale with that of Fig. 97,

the force diagram, Fig. 95, for the girder represented in Fig.

94 and described in Art, 647. On a vertical, RP, make
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RM equal to FU (97); and RS equal to the weight A,

57' equal to the weight B, and TP equal to the weight

C, all as in Fig. 94. Now, since RM equals FU (97),

equals the reaction of the support R. therefore, from R
draw RE parallel with RE (94), and from M draw ME
parallel with ME (94). From M make ML equal to the

weight E (94), and LK equal to the weight D (94).

Draw the other lines all parallel with the corresponding
lines of Fig. 94, as per Arts. 618 and 619, and the force dia-

gram will be complete.

650. Load upon Each Support, Arithmetically Obtained.

The reaction of the two supports may be found arithmet-

ically, as before stated, by the use of formulas (304) and

(305.). Thus, let the several weights A, B, C, D and

E of Fig. 94 be rated, by the scale of the diagram, at 15,

23, 17, 22 and 19 parts respectively. These parts may
represent hundreds or thousands of pounds, or any other

denomination at will. Let /, the span, equal 64, and the

several distances n, /, r, v and t measure respectively

54, 34, 8, 26 and 44 by the same scale.

Formula (304) now gives

(15. x 54) + (23 x 34) + (17 * 8) + (22 x 26) + (19 x 44) .

~6^~
= 49

Formula (305) gives

p = 05 x io) + (23x3o) + (i;x 56) + (22x 38) + (19x20) _
64

R -r P 49 + 47 = 96

The sum of the weights is

W 15 + 23 + 17 + 22+19 = 96

the same amount, thus proving the above computation cor-

rect.



QUESTIONS FOR PRACTICE.

651. Given a frame similar to Fig. 87, with a span of 40

feet, a height of 23 feet, with the length of the vertical BC

equal to 15 feet, and with AF and BG equal. Draw a

diagram of forces, and show what the strains are in each line

of the frame; the three loads FG, GH and HJ being

each equal to 5000 pounds.

652. According to the rule given in Art. 624, show

what should be the height of a framed girder which is 75

feet between bearings.

653. According to Art. 627, show how many bays the

girder of the last article should have.

654. Show, by the diagram of forces, what are the

strains in the several lines of a girder 55 feet long between

centres of bearings and 5-27 feet high between axes of

chords ; the girder to be divided into five equal bays, each

being an isosceles triangle as in Fig. 93. The load upon the

apex of each triangle is 5000 pounds, and that suspended
from the lower chord at each point of intersection with the

diagonals is 1250 pounds. Letter the girder as in Fig. 91.

655. To test the accuracy of the results obtained in the

last article compute the strains arithmetically.
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656. What should be the areas of cross-section of the

bottom chord of the girder of Art. 654, at the several bays?
What should be the sizes of the upper chord and of the

diagonal struts? The timber is to be of spruce ; a, the fac-

tor of safety, to be taken at 10, and n at 1-2.

What should be the areas of cross-section of the diagonal

rods, taking the safe strength of the metal at 9000 pounds ?

In the questions of this Art. take the strains given by the

diagram of forces.



CHAPTER XXIII.

ROOF TRUSSES.

ART. 657. Roof Trusses considered as Framed Girders.

It is proposed, in this chapter, to discuss the subject of

roof trusses in so far only as they may be considered to be

framed girders, placed in position to carry the roofing mate-'

rial. A full treatise on roofs would include matter extending

beyond the limits of a work on the transverse strain. Those

desirous of pursuing the subject farther are referred to Tred-

gold, Bow and others* who have written more fully on

roofs.

658. Comparison of Roof Trusses. Designs for roof

trusses, illustrating various principles of roof construction,

are herewith presented.

The designs at Figs. 98 to 102 are distinguished from those

at Figs. 103 to 106, by having a horizontal tie-beam. In the lat-

ter group, and in all designs similarly destitute of the horizon-

tal tie at the foot of the rafters, the strains are much greater

than in those having the tie, unless the truss be protected

by exterior resistance, such as may be afforded by competent
buttresses.

To the uninitiated it may appear preferable, in Fig; 103,

to extend the inclined ties to the rafters, as shown by the

dotted lines. But this would not be beneficial : on the con-

*
Tredgold's Carpentry. Bow's Economics of Construction.
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trary, it would be injurious. The point of the rafter where

the tie would be attached is near the middle of its length,

and consequently is a point the least capable of resisting

transverse strains. The weight of the roofing itself tends to

bend the rafter
;
and the inclined tie, were it attached to the

rafter, would, by its tension, have a tendency to increase this

bending. As a necessary consequence, the feet of the rafters

would separate, and the ridge descend.

98. 99- 100.

K
101. 102. 103.

104. 105. 106.

In Fig. 104 the inclined ties are extended to the rafters;

but here the horizontal strut or straining beam, located at

the points of contact between the ties and rafters, counteracts

the bending tendency of the rafters and renders these points

stable. In this design, therefore, and only in such designs, is

it permissible to extend the ties through to the rafters.

Even here it is not advisable to do so, because of the in-

creased strain produced. (See Figs. 118 and 120.) The design

in Fig. 103, 105 or 106 is to be preferred to that in Fig. 104.



LOAD UPON EACH SUPPORT. 461

659- Force Diagram Load upon Each Support.- By a

comparison of the force diagrams hereinafter given, of each

of the foregoing designs, we may see that the strains in the

trusses without horizontal tie-beams at the feet of the rafters

are greatly in excess of those having the tie. In constructing

these diagrams, the first step is to ascertain the reaction of,

or load carried by, each of the supports at the ends of the

truss. In symmetrically loaded trusses, the weight upon each

support is always just one half of the whole load.

660. Force Diagram for Trus in Fig. 98. To obtain the

force diagram appropriate to the design in Fig. 98, first letter

the figure as directed in Art. 619, and as in Fig. 107. Then

G-

FIG. 108.

draw a vertical line, EF (Fig. 108), equal to the weight W
at the apex of the roof; or (which is the same thing in effect)

equal to the sum of the two loads of the roof, one extending

on each side of W half-way to the foot of the rafter. Di-

vide EF into two equal parts at G. Make GC and

GD each equal to one half of the weight N. Now, since

EG is equal to one half of the upper load, and GD to one

half of the lower load, therefore their sum, EG + GD = ED,
is equal to one half of the total load, or to the reaction of

each support, E or F. From D draw DA parallel

with DA of Fig. 107, and from E draw EA parallel with

EA of Fig. 107. The three lines of the triangle AED rep-
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resent the strains, respectively, in the three lines converging
at the point ADE of Fig. i7. Draw the other lines of the

diagram parallel with the lines of Fig. 107, and as directed in

Arts. 619 and 620. The various lines of Fig. 108 will repre-

sent the forces in the corresponding lines of Fig. 107; bearing
in mind (Art. 619) that while a line in the forge diagram is

designated in the usual manner by the letters at the two ends

of it, a line of the frame diagram is designated by the two

letters between which it passes. Thus, the horizontal lines

AD, the vertical lines AB, and the inclined lines AE
have these letters at their ends in Fig. 108, while they pass

between these letters in Fig. 107.

661. Force Diagram for Tru in Fig. 99. For this truss

we have, in Fig. 109, a like design, repeated and lettered as

FIG. 109. FIG. no.

required. We here have one load on the tie-beam and three

loads above the truss
;
one on each rafter and one at the

ridge. In the force diagram, Fig. no, make GH, HJ and

JK, by any convenient scale, equal, respectively, to the

weights Gff, HJ and JK of Fig. 109. Divide GK into

two equal parts at L. Make LE and LF each equal to

one half the weight EF (Fig. 109). Then GF is equal to

one half the total load, or to the load upon the support G

(Art. 660). Complete the diagram by drawing its several

lines parallel with the lines of Fig. 109, as indicated by the

letters (see Art. 660), commencing with GF, the load on
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the support G (Fig. 109). Draw from F and G the two

lines FA and GA, parallel with these lines in Fig. 109.

Their point of intersection defines the point A. From this'

the several points B, C and D are developed, and the

figure completed. Then the lines in Fig. no will represent

the forces in the corresponding lines of Fig. 109, as indicated

by the lettering. (See Art. 619.)

662. Force Diagram for Truss in Fig. 100. For this

truss we have, in Fig. in, a similar design, properly prepared

B D

FIG. 112.

by weights and lettering ;
and in Fig. 112 the force diagram

appropriate to it.
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In the construction of this diagram, proceed as directed

in the previous example, by first constructing NS, the ver-

tical line of weights ;
in which line NO, OP, PQ, QR and

RS are made respectively equal to the several weights

above the truss in Fig. in. Then divide NS into two

FIG. ii2.

equal parts at T. Make TK and TL each equal to the

half of the weight KL. Make JK and LM equal to the

weights JK and LM of Fig. in. Now, since MN is

equal to one half of the weights above the truss, plus one

half of the weights below the truss, or half of the whole

weight, it is therefore the weight upon the support N (Fig.
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in), and represents the reaction of that support. A horizon-

tal line drawn from M will meet the inclined line drawn

from Nj parallel with the rafter AN (Fig. in), in the

point A
t

and the three sides of the triangle AMN (Fig.

112) will give the strains in the three corresponding lines

meeting at the point AMN (Fig. in). The sides of the tri-

angle HJS (Fig. ii2) give likewise the strains in the three

corresponding lines meeting at the point HJS (Fig. in).

Continuing the construction, draw all the other lines of the

force diagram parallel with the corresponding lines of Fig.

in, and as directed in Art. 619. The completed diagram
will measure the strains in all the lines of Fig. in.

663. Force Diagram for Truss in Fig. 101. For the roof

truss at Fig. 101 we have, in Fig. 113, a repetition of it, and in

Fig. 114 its force diagram.

FIG. 113.

FIG. 114.
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The dimensions on the vertical line HL (Fig. 114) are

made respectively equal to the weights in Fig. 113, as indi-

cated by the lettering. With GH equal to half the whole

weight on the truss (Art. 660), the triangle AGH is con-

structed, giving the strains in the three lines concentrating

at the point AGH (Fig. 113). Then, drawing the other lines

parallel with the corresponding lines of Fig. 113, the com-

pleted diagram gives the strains in the several lines of that

figure, as indicated by the lettering. (See Art, 619.)

664-. Force Diagram for Trus in Fig. 102. The roof

truss indicated at Fig. 102 is repeated in Fig. 115, with the

addition of the lettering required for the construction of the

force diagram, Fig. 116.

In this case, there are seven weights, or loads, above the

truss, and three below. Divide the vertical line OV at

Wy into two equal parts, and place the lower loads in two

equal parts on each side of W. Owing to the middle one

of these loads not being on the tie-beam with the other two,

but on the upper tie-beam, the line GH, its representative

in the force diagram, has to be removed to the vertical BJ,

and the letter M is duplicated. The line NO equals half

the whole weight of the truss, or 3^ of the upper loads, plus

one of the lower loads, plus half of the load at .the upper tie-

beam. It is therefore the true reaction of the support NO,

and AN is the horizontal strain in the beam there. It will

be observed also, that while HM and GM (Fig. 116),

which are equal lines, show the strain in the lower tie-beam

at the middle of the truss, the lines CH and FG, also

equal but considerably shorter lines, show the strains in the

upper tie-beam. Ordinarily in a truss of this design, the

strain in the upper beam would be equal to that in the lower

one, which becomes true when the rafters and braces above
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the upper beam are omitted. In the present case, the thrusts

of the upper rafters produce tension in the upper beam

FIG. 115.

FIG. 1 1 6.

equal to CM or FM of Fig. 116, and thus, by counteract-

ing the compression in the beam, reduce it to CH or FG
of the force diagram, as shown.
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665. Force Diagram for Truss In Fig. 103. The force

diagram for the roof truss at Fig. 103 is given in Fig. 118,

while Fig. 117 is the truss reproduced, with the lettering

requisite for the construction of Fig. 118.

FIG. 117. FIG. 118.

The vertical EF (Fig. 118) represents the load at the

ridge. Divide this equally at W, and place half the lower

weight each side of W, so that CD equals the lower

weight. Then ED is equal to half the whole load, and

equal to the reaction of the support E (Fig. 117). The lines

in the triangle ADE give the strains in the corresponding
lines converging at the point ADE of Fig. 117. The other

lines, according to the lettering, give the strains in the cor-

responding lines of the truss. (See Art. 619.)

666. Force Diagram for Truss in Fig. 104. This truss is

reproduced in Fig. 119, with the letters proper for use in the

force diagram, Fig. 120.

Here the vertical GK, containing the three upper loads

GH, HJ and JK, is divided equally at W, and the lower

load EF is placed half on each side of W, and extends

from E to F. Then FG represents one half of the

whole load of the truss, and therefoie the reaction of the sup-

port G (Fig. 119). Drawing the several lines of Fig. 120

parallel with the corresponding lines of Fig. 119, the force
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diagram is complete, and the strains in the several lines of

119 are measured by the corresponding lines of 120, (See

Art. 619.)

FIG, 120.

A comparison of the force diagram of the truss in Fig. 117

with that of the truss in Fig. 119 shows much greater strains

in the latter, and we thus see that Fig. 117, or 103, is the more

economical form.

667. Force Diagram for Truss in Fig. 105. This truss

is reproduced and prepared by proper lettering in Fig. 121,

and its force diagram is given in Fig. 122.

Here the vertical JM contains the three upper loads

JK, KL and LM. Divide JM into two equal parts at
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G, and make FG and GH respectively equal to the two

loads FG and GH of Fig. 121. Then HJ represents one

half of the whole weight of the truss, and therefore the reac-

tion of the support J. From H and J draw lines par-

allel with AH and AJ of Fig. 121, and the sides of the tri-

FlG. 121.

M

FIG. 122.

angle AHJ will give the strains in the three lines concen-

trating in the point AHJ (Fig. 121). The other lines of Fig.

122 are all drawn parallel with their corresponding lines in

Fig. 121, as indicated by the lettering. (See Art. 619.)
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FIG. 123.

FIG. 124.



472 ROOF TRUSSES. CHAP. XXIII.

668. Force Diagram for Truss in Fig. 106. This truss

is reproduced in Fig. 123 with the lettering proper for its

force diagram, as given in Fig. 124. The five external weights
of Fig. 123 make up the line LQy

and the two internal

weights are set, one on each side of y, the middle point of

LQj extending to H and K. KL equals one half the

weight of the whole truss, and equals the reaction of the

point of support L (Fig. 123). The sides of the triangle

AKL, therefore, give the respective strains in the three lines

converging at the point AKL of Fig. 123. The other lines

of Fig. 124 are found in the usual manner. (See Art. 619.)

669. Strains in Horizontal and Inclined Ties Compared.

A comparison between a truss with a horizontal tie at the

FIG. 125.

feet of the rafters, and one without such tie will now be

given. The truss without a horizontal tie shown in Fig. 103

is one of the simplest in construction, and is suitable for the

comparison. Repeating it in Fig. 125, and adding the dotted

lines, we have likewise the form of a truss with a horizontal

tie. From Art. 608 we have, in formula (293.\ for the hori-

zontal strain,

H, = W

in which W
t .equals the total weight of the truss and its

load (Fig. 125), // equals half the span, equals AD, and c
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W
equals twice the height, equals 2DE. By putting P

equals the reaction of one of the supports A or B, and

putting d for DE, we have

or, from Fig. 125,

DE : AD : : P : H

d : h : : P : H = P-,
a

that is to say, when the vertical DE represents half the

weight of the truss, then AD may be put to represent the

horizontal strain. Draw CF horizontal, and by similar tri-

angles we have

DE : AD : : CE : CF or

CE : CF :: P : H = P
L̂JtL

or, with CE put to represent one half the weight of the

whole truss, then CF, by the same scale, will measure the

horizontal strain.

Under these conditions, CF measures the horizontal

strain in either truss, whether with or without a tie-beam.

If the truss have a horizontal tie AB, then CF measures

the tension in this tie. If it be without the tie AB, having
instead thereof the raised tie ACB, then still CF mea-

sures the horizontal strain at A or B
J

but not the strain in

the raised tie AC.

The strain in this inclined tie is measured by the line

AC, for the three sides of the triangle ACE are in propor-

tion as the strains in these lines respectively (see Art. 619),

therefore the strains in the ties of the two trusses are compa-
rable by the two lines CF and AC.
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The compressive strain in the rafter is also correspond-

ingly increased; for just in proportion as AE exceeds

F, so does the compressive strain in the rafter of a truss

with an inclined tie exceed that of one with a horizontal tie.

670. Vertical Strain in Tru with Inclined Tie. In

Fig. 125, if the inclined tie were lowered, so that the point C,

FIG. 125.

descending, should reach the point D
; or, if the inclined

tie become the horizontal tie AB
;

then the vertical rod

DE would be subject to no strain from the weight of the

rafters and the load upon them. In the absence of the

horizontal tie, or when the inclined tie is depended upon to

resist the spreading of the rafters, the vertical rod CE is

strained directly in proportion to CD, the elevation of the

tie, and inversely as the height CE. This relation may be

shown as follows :

Let P be put for DE (Fig. 125) and represent one half

the weight of the truss. Then AD will represent the

horizontal strain at A ; or, representing the span AB by

then equals AD equals the horizon-the symbol

tal strain. Putting a for CD and d for DE we have

the proportion
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DE : AD : : P : H

or d :
- :: P' H=P-^2 2d

and also, AD : CD : : H : V

S-
: a :VJ5T: V = H^ = P

2 s d

by substitution, or

This gives the vertical strain in CE, due to the raising

of the tie from D to C, but it is not the whole of the

strain
;

it is only so much of the vertical strain as is due to

the weight of the roof. The tension thus found in CE is

sustained at E by the two rafters, and, passing through
them to A and /?, creates horizontal and vertical thrusts

precisely as did the original weight. The vertical tension

thus brought to CE again acts as a weight at
, and,

passing down the rafters and through the tie back to C,

again adds a load at C. This in turn passes around and re-

turns to C, adding to the load
;
and so on in an endless

round to infinity. But the successive strains thus generated
are in a decreasing series, and they may therefore be summed

up and defined. Thus, as has just been shown, the vertical

effect from the weight of the roof is

The vertical effect of this latter is

d: a :: V : V = V--^pd
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The vertical effect of this is

d : a :: V : V" = V'r = P\-d \d

The next term in the series will be

and the sum of all the terms will be

a / a

showing that the several values of the fraction by which the

weight P is multiplied constitute a geometrical series, with

j- for the first term and -j- for the ratio. Since j- is
a da
less than unity, we have a geometrically decreasing infinite

series, the sum of which is equal to the first term divided by
one minus the ratio,* or

a

c- ^ a

a d a

and, since da~b ot Fig. 125,

We have, therefore, as the total vertical effect due to the

elevation of the middle of the tie from D to C,

Ray's Algebra, Part Second, Art. 299,



INCLINED TIES ILLUSTRATIONS. 477

or the vertical effect is directly in proportion to CD, the

elevation of the tie, and inversely in proportion to CE, the

length of the vertical tie-rod.

671. Illustrations. To illustrate the effect of the eleva-

tion of the tie-rod, upon the vertical strain in the suspension-

rod, let the point C, Fig. 125, be elevated
-J-

of the verti-

Fio. 125.

cal height of the truss above the horizontal line AB. Here

a = i and b == 4, and -y- = \ ;
or

When the elevation equals of the entire height, then

When the elevation equals \ of the entire height, then

When the elevation equals \ of the whole height, then

Thus it is seen, in this last case, that the effect due to the
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elevation of the tie-beam is equal to that of doubling- the

whole weight of the roof, and this increase affects not only
the vertical suspension rod at the middle, but also the rafters

and inclined ties, as was shown at Art. 669.

When, therefore, in order to gain a small additional

height to the interior of a building, it is proposed to raise the

middle point of the tie-rod, it would seem advisable to con-

siaer whether this small additional height be an adequate

compensation for the increased strains thereby induced, and

the consequent enhanced cost for material necessary to re-

sist these strains
;
and also, whether it be not more advisable

to raise the walls of the building, rather than the ties of the

trusses.

672. Planning a Roof. In designing a roof for a build-

ing, the first point requiring attention is the location of the

trusses.' These should be so placed as to secure solid bear-

ings upon the walls
;
care being taken not to place either of

the trusses over an opening, such as those for windows or

doors, in the wall below. Ordinarily, trusses are placed so

as to be centrally over the piers between the windows
;
the

number of windows consequently ruling in determining the

number of trusses and their distances from centres. This

distance should be from ten to twenty feet
;
fifteen feet apart

being a suitable medium distance. The farther apart the

trusses are placed, the more they will have to carry ;
not

only in having a larger surface to support, but also in that

the roof timbers will be heavier
;
for the size and weight of

the roof beams will increase with the span over which they

have to reach.

In the roof-covering, itself, the roof-planking may be laid

upon jack-rafters, carried by purlins supported by the

trusses
;
or upon roof beams laid directly upon the back of
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the principal rafters in the trusses. In either case, proper

struts should be provided, and set at proper intervals to re-

sist the bending of the rafter. In case purlins are used, one

of these struts should be placed at the location of each

purlin.

The number of these points of support rules largely in

determining th'e design for the truss, thus :

For a short span, where the rafter will not require sup-

port at an intermediate point, Fig. 98 or 103 will be

proper.

For a span in which the rafter requires supporting at one

intermediate point, take Fig. 99, 104 or 105.

For a span with two intermediate points of support for

the rafter, take Fig. 100 or 106.

For a span with three intermediate points, take Fig. 102.

Generally, it is found convenient to locate these points of

support at nine to twelve feet apart. They should be suf-

ficiently close to make it certain that the rafter will not be

subject to the possibility of bending.

673 Load upon Roof Truss. In constructing the force

diagram for any truss, it is requisite to determine the points
of the truss which are to serve as points of support (see

Figs. 109, in, etc.), and to ascertain the amount of strain, or

loading, which will occur at every such point.

The points of support along the rafters will be required
to sustain the roofing timbers, the planking, the slating, the

snow, and the force of the Avind. The points along the tie-

beam will have to sustain the weight of the ceiling and the

flooring of a loft within the roof, if there be one, together
with the loading upon this floor. The weight of the truss

itself must be added to the weight of roof and ceiling.
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674. Load on Roof per Foot Horizontal. In any im-

portant work, each of the items in Art. 673 should be care-

fully estimated, in making up the load to be carried. For

ordinary roofs, the weights may be taken per foot superficial,

as follows :

Slate, about 7-0 pounds.
Roof plank,

"
2-7

"

Roof beams, or jack-rafters,
"

2-3
"

In all, 12 pounds.

This is for the superficial foot of the inclined roof. For the

foot horizontal, the augmentation of load due to the angle of

the roof will be in proportion to its steepness. In ordinary

cases, the twelve pounds of the inclined surface will not be

far from fifteen pounds upon the horizontal foot.

For the roof load we may take as follows :

Roofing, about 15 pounds.

Roof truss,
"

5

Snow, " 20 "

Wind, " 10

Total on roof, 50 pounds

per square foot horizontal.

This estimate is for a roof of moderate inclination, say

one in which the height does not exceed i of the span.

Upon a steeper roof, the snow would not gather so heavily,

but the wind, on the contrary, would exert a greater force.

Again, the wind acting on one side of a roof may drift the

snow from that side, and perhaps add it to that already

lodged upon the opposite side. These two, the wind and

the snow, are compensating forces. The action of the snow

is vertical : that of the wind is horizontal, or nearly so. The

power of the wind in this latitude is not more than thirty
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pounds upon a superficial foot of a vertical surface
; except,

perhaps, on elevated places, as mountain tops for example,

where it should be taken as high as fifty pounds per foot of

vertical surface.

675. Load upon Tie-Beam. The load upon the tie-

beam must of course be estimated according to the require-

ments of each case. If the timber is to be exposed to view,

the load to be carried will be that only of the tie-beam and

the timber struts resting upon it. If there is to be a ceiling

attached to the tie-beam, the weight to be added will be in

accordance with the material composing the ceiling. If of

wood, it need not weigh more than two or three pounds per

foot. If of lath and plaster, it will weigh about nine pounds ;

and if of iron, from ten to fifteen pounds, according to the

thickness of the metal. Again, if there is to be a loft in the

roof, the requisite flooring may be taken at five pounds, and

the load upon the floor at from twenty-five to seventy

pounds, according to the purpose for which it is to be used.

676. Selection of Design for Roof Trus. As an ex-

ample in designing a roof truss : Let it be required to provide
trusses for a building measuring 60 x 90 feet to the centre

of thickness of the walls, with seven windows upon each

side, and with a roof having its height equal to one third of

the span. The roofing is to be of plank and slate, the ceil-

ing is to be finished with plastering, and the space within

the roof is to be used for the storage of light articles, not to

exceed twenty-five pounds to the square foot.

Here, in the first place, we have to determine the number

of trusses. As there are seven windows on a side, there

should be six trusses, one upon each pier between the win-

dows. The six trusses and the two end walls will afford
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eight lines of support for the roofing. There will thus be

seven bays of roofing of Sf-
=

\2-\ feet each, and this is the

width of roofing to be carried by each truss.

In the next place, the points of support in the truss are

to be ascertained. If these are provided at every ten feet

horizontally, they will divide the half truss into three spaces,

and there will be two intermediate points of support. For

this arrangement, such a roof truss as is shown in Fig. 100 will

be appropriate, but if the space in the roof is required to be

quite unobstructed with timber at the middle, then a modifi-

cation of this design may be used, as in the form shown in

Fig. 126
;
each rafter being still divided into three equal

parts.

677. Load on Each Supported Point in Tru. The

horizontal measurement, then, of the roofing to be carried

by each supported point in the truss, will be 10 feet along

the line of the truss and
12-f-

feet across the truss (this

latter being the width of each bay as above found); or

lox 12-f-
= 128^- feet. With a weight per foot of 50 pounds,

as estimated in Art. 674, we have, for the load upon each

supported point of the truss,

1284- X 50 = 64284

or, say 6500 pounds.

678. Load on Each Supported Point in Tie-Beam.

The tie-beam having two points of support, we have

*- = 20 feet for the length of the surface to be carried.

This, multiplied by the width between trusses, gives

20 x \2\ = 257^ feet area of surface to be carried by each

point of support. We will estimate the weight per foot in

this present case as follows:
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Load upon the floor, 25 pounds.

Flooring, with timber, 5

Plastering, 9

Tie-beam, etc., i pound.

Total at tie-beam, 40 pounds.

This gives

2571- x 40 = 102856-

or, say 10,300 pounds upon each supported point.

Therefore, the two balls GH and HJ, suspended

from the tie-beam of Fig. 126, are to be taken as weighing

10,300 pounds each, while the five balls located above the

rafters are to be understood as weighing 6500 pounds
each (Art. 677).

679. Contracting the Force Diagram. We may now

proceed to construct the force diagram, Fig. 127, as follows:

Upon the vertical line KP lay off in equal parts KL,

LM, MN, NO and OP, according to any convenient

scale, each equal to 6500 pounds the weight of the balls

above the rafters (Art. 677). If a scale of 100 parts to the

inch be selected for the force diagram, and each part be

understood as representing 100 pounds, then *- = 65,

equals the number of parts to assign to each of the distances

KLj LM, etc., and each will be T
6
^
5
y

of an inch in length.

Dividing KP at H into two equal parts, lay off on each side

of H the distances GH and HJ^ each equal, by the

scale, to 10,300 pounds. This distance is found by dividing

10,300 by IOD
;

the quotient 103 is the number of parts,

and the distances will each be fjj-J, or one inch and

of an inch in length.*

* The scale here selected, although sufficient for the purposes of illustration,
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HK now represents one half the weight upon the

rafters, and HJ one half the load upon the tie-beam, and

their sum, JK, equals one half the total load of the truss,

equals the load upon the point of support K.

FIG. 126.

FIG. 127.

From y, H and G draw the horizontal lines JA,

HD and GF. From K, L, M, N, O and P draw

would be too small for a working drawing. For the latter, a scale should be

selected as large as can be conveniently used, such as 10 parts to the inch,

and too pounds to each part. This would give 1000 pounds to the inch,

and each of the distances KL, LM, etc., would measure 6^ inches.

It must also be remembered that the accuracy of the force diagram depends

upon the care with which the distances upon the vertical line are laid off and

the lines drawn. The drawing implements should be examined to know that

they are true, and each line should be drawn carefully parallel with the corre-

sponding line of the truss. Unless this care is exercised, the results may differ

considerably from the truth.
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lines, as shown, carefully parallel with the rafters. From

F and A draw the lines FE and AB, parallel with

the two braces. Connect B and E by the vertical line

BE, and then the force diagram is complete.

680. Uleasanrtiig tlie Force Diagram. After drawing
the lines of the diagram as above directed, they should all

be carefully traced to know that the required conditions are

fulfilled, or that each set of lines, drawn parallel, in the dia-

gram of forces, to the lines converging to a point in the

truss, forms a closed polygon. (See Arts. 618, 619 and 620.)

The diagram, by this test, having been found correct, the

force in each line of the truss may be measured by applying
the scale to the corresponding line of the diagram.

For example, take the strains in one of the rafters. At

its lower end, or the part A K, its corresponding line AK
of Fig. 127 measures 478 parts, by the same scale with

which the weights on the vertical line KP were laid off.

This, at 100 pounds to the part, gives 47,800 pounds as

the strain in the foot of the rafter. The next section of the

rafter is designated by the letters BL, and the line BL
(Fig. 127) measures 420, and indicates a strain in this part of

the rafter of 42,000 pounds. The third or upper portion

of the rafter is designated by the letters CM, and the cor-

responding line in Fig. 127 measures 58 parts, indicating

5800 pounds as the strain in the upper end of the rafter.

For the brace AB we have the line AB (Fig. 127),

measuring 58 parts of the scale, and indicating 5800

pounds as the strain in the brace.

For the vertical BD we have the line BD (Fig. 127)

measuring 135 parts of the scale, and indicating 13,503

pounds as the strain in the vertical.

For the horizontal strains, we have for CD, the corre-

sponding line in Fig. 127, which measures 301 parts, and
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gives 30,100 pounds as the strain. For DH, the middle

portion of the tie-beam, DH (Fig. 127) measures 350,

showing the strain to be 35,000 pounds; and lor AJ, or

one end of the tie-beam, AJ (Fig. 127) measures 398

parts, and gives 39,800 pounds as the strain.

The strains in the other and corresponding parts of the

truss are the same as these, so that we now have all the

strains required.

681. Strains Computed Arithmetically. Instead of de-

pending solely upon the scale, the lengths of the lines in the

force diagram may be computed arithmetically. The sizes

measured by the scale, when the diagram is carefully drawn,

are sufficiently accurate for all practical purposes ;
but in

some cases, such, for instance, as when the implements for

making a correct diagram are not at hand, and in all cases

as a check upon the accuracy of the results obtained by the

graphic method, to be able to arrive at the correct results

arithmetically would be useful. Preparatorv to computing
r the lengths of the lines, it will be observed that the triangle

KAJ, Fig. 127, is precisely proportionate to the triangles

formed by the inclination of the rafters of Fig. 126 with the

vertical and horizontal lines
;
that all the inclined lines of

Fig. 127 are drawn at equal angles of elevation
;
and that the

triangles formed by these inclined lines with the vertical

and horizontal lines are all homologous.

Since the height of the roof is given at 20 feet, and half

the span is 30 feet, therefore the perpendicular and base

lines of each triangle are in like proportion namely, as 20

to 30, or as i to ij.

The perpendicular being the weight in each case, which

is known, we may, therefore, by this proportion obtain the

base. Having both base and perpendicular, the length of

the hypothenuse may be found by Euclid's 47th of ist book
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the length of the hypothenuse equals the square root of the

sum of the squares of the base and perpendicular. If the

hypothenuse of one triangle be computed by this method,

that of the others (since the triangles are homologous) may
be found by the more simple method of proportion.

Taking a triangle having the perpendicular and base

equal to i and i|, we find, by the above rule, that its

hypothenuse equals 1-802776 nearly. The hypothenuses of

the other triangles, therefore, may be found by the proportion :

I : 1-802776 : : / : h

h = i- 802776^

and for the base we have

I : i -

5 : : / : b

b= i - 5/

With these formulas, the lines in Fig. 127 have been computed.
The strains in the proposed truss (Fig. 126), by both methods,

have been found to be as follows :

HY SCALE. BY COMPUTATION.

AK 47,800 pounds ; 47,864 pounds.

BL = 42,000 42,005

CM = 5,800
"

5,859

AB = 5,800
"

5,859

CD 30,100
"

30W5
DH = 35,000

"
34,950

AJ = 39,800
" '

39,825

BD = 13,500
"

13,550

682. I>imeiision of Part Subject to Tension. With

these forces, and the appropriate rules hereinbefore given,

the dimensions of the several parts of the truss may now be

determined.
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Commencing with the tie-beam, KP, it may be observed,

preparatory to computing- its dimensions, that while this

piece, in resisting the thrust of the rafters, is subjected to a

tensile strain, it is also subject to a transverse strain from

the weight of the ceiling and floor which it has to carry.

These two strains, however, are of such a nature that in

their effect upon the beam they do not conflict
;

for the

tensile strain from the thrust of the rafters, acting, as it will

usually, in the upper half of the beam, serves to counteract

the compression produced by the transverse strain in this

part of the beam, and the fibres near the middle of the

beam, owing to their proximity to the neutral line, being
strained very little by the transverse strain, have a large

reserve of strength available to assist in resisting the tensile

strain. It will be sufficient, therefore, to provide a piece of

timber for the tic-beam of sufficient size to resist only one

of the two strains
;
not necessarily that strain, however,

which is the greater, but that one which requires the larger

piece of timber to resist it.

The computations of dimensions required to resist the

two strains will now claim attention.

For the tensile strain we have, 'by formula (299.)^

20 x 39800 _

16000"

or say 50 inches area of cross-section, for Georgia pine.

For white pine the area should be 65 inches,

The load producing transverse strain is (Art. 678) 10,300

pounds. The rule for determining the proper area of cross-

section is to be found in formula (130.\ which may be

modified for this case by substituting rl for <5, the symbol
for deflection, and by putting for r the rate 0-04 of an

inch. With these substitutions, we have
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Fixing upon a proportion for b in terms of d, say, for ex-

ample, b f^> and substituting this value for b, we have

IU1
2

0-04 x IFd*

MfWV ,<

F
~

If the timber is to be of white pine, then F equals

2900 (Table XX.), and we have

4/2O|=r y -

X 10300 X 20 .- = 13- 116
2900

or the depth will need to be I3-J- inches. Three quarters

of this, or 9!, will be the breadth. The tie-beam, of white

pine, will need to be, therefore, say lox 13 inches. If of

Georgia pine, instead of white pine, then 5900, the value of

F for Georgia pine, must be substituted for 2900 in the

formula, and the results, 8-237 and 10-982, will show, say

8J- x 1 1 inches as the size of timber required.

The dimensions thus found, to resist the transverse strain,

being in excess of those required to resist the tensile strain,

are to be adopted as the dimensions of the required tie-

beam.

The length of the tie-beam, 60 feet, being greater than

can readily be obtained in one piece, it will have to be built

up. In doing this, it is necessary that each piece be of the

full height of the beam, or that the joints of the make-up be

vertical and not horizontal. These vertical laminas should

be in pieces of such lengths that no two heading joints occur

within five feet of each other, and that these joints shall be

as near as practicable to the two vertical suspending rods.

The laminas need to be well secured together with proper
iron bolts. The feet of the rafters should be provided with

iron clamps of sufficient area to resist the horizontal strain

there, and should be secured to the tie-beam with bolts of

corresponding resistance.
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If the iron in the bolts and clamps of the truss be of aver-

age good quality, it may be calculated on as resisting effec-

tually 9000 pounds per square inch (see Art. 642). The

vertical suspension rods BD and DE, Fig. 126, may also

be calculated for a like strain.

683. Dimenion of Part Subject to ompreion.
The rafters, straining beam and braces are all subject to

compression, and their dimensions may now be obtained.

The areas of these pieces may be had by the use of

formula (301.) ; or, as this in some cases is objectionable, for

the reason that the ratio between the length and thickness

has to be assumed in advance, we may find in formula (303.)

a rule free from this objection, but encumbered with more

intricate computations. Formula (301.), when used by those

having experience in such work, is far preferable^ on account

of its greater simplicity.

Taking first the rafter, and the portion of it at the foot,

where the strain is greatest, 47,800 pounds, we have for its

length about 12 feet. If of Georgia pine, its thinnest

dimension of cross-section will probably be about 8 inches.

Then r= - = 18 (see Art. 643). The value

of C is 9,500 and the value of e is 0-00109, both by
Table XX. Making the symbol for safety, a, equal 10

we have

io[i +(f x 0-00109 x 1 8
2

)] 47800A m 70
9500

/

or the area of the rafter should be 77, say 8 x 9f inches.

If computed by formula (303.), putting n = 1-2, the

exact size will be found at 8-006 x 9-607 = 76-92 inches

area.
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684._I>imeiiion of Mid-Rafter. In the rafter at BL

the strain is 42,000 pounds. The length and ratio here will

be the same as at AK, and the dimensions of AK and

BL are therefore in proportion to the weights (form.

301.\ or

47800 : 42000 : : 76-92 : A

so that 68 inches of sectional area, or 8 x 8J inches, is the

size required.

685. Dimension of Upper Rafter. The upper end of

the rafter has only the weight at the ridge, 5,800 pounds, to

bear. The thickness of the rafter here will probably be but

4 inches. This gives a ratio of i|^ = 36. With this ratio,

with 5,800 for the weight, and with the other quantities as

before, a computation by formula (301^ will result in show-

ing the required area to be 19-04, or, say 4x5 inches;

but, in order to resist effectually the distributed load of the

roofing, this part of the rafter should not be less than 4x8
inches.

686. l>imenion of Braee. The brace, AB, being of

equal length and carrying an equal load with the upper end

of the rafter, may be made of the size there found necessary,

or, say 4x6 inches.

687. Dimeiiiions of Straining-Beam. The straining-

beam CD is compressed with a strain of 30,100 pounds,
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and its length is 20 feet.

Assuming its thickness to be that of the rafter, we have

r = = 30, and in formula (301.)

)1 30100
-=78-29

9500

or its area should be ;8i, or, say 8 x 10= 80 inches.

With this result, the computation of the dimensions of all

the pieces of the truss is completed ;
for the other rafter and

brace are in like condition with those computed, and should

therefore be of the same dimensions.

QUESTIONS FOR PRACTICE.

688. In a roof truss similar to that shown in Fig. 109, of

42 feet span and 14 feet height, measuring from the

axial lines : What will be the strains in the various pieces of

the truss, with a load of 5,000 pounds at each of the three

points above the rafters, and a load of 10,000 pounds

suspended from the centre of the tie-beam ?

Draw the appropriate force diagram, and give the strains

from measurement.

689. Draw a force diagram for a roof truss similar to

the design in Fig. in, with a span of 54 feet and a height
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of 1 8 feet; the upper weights being taken at 6,000

pounds each, the central weight under the tie-beam at

5,000 pounds, and each of the two other weights at 7,000

pounds.

Show, from the diagram, the strain in each line of the

truss.

690. In a truss similar to that in Fig. 121, show, by a

force diagram, what would be the strains in each line, when

the span is 40 feet and the height 20 feet. The weights

FG and GH are so located as to divide the span into

three equal parts, the three loads above the rafters are each

7,000 pounds, and the two loads below each 4,000 pounds.

The point JABK is to be taken at the middle of the

rafter, and the line AB is to be drawn at right angles

with the rafter.

691. In a roof with an elevated tie-beam, such as in Fig.

125, with a span of 40 feet and height of 20 feet, and

with the tie elevated at the middle 8 feet above the level

of the feet of the rafters, compute the strain in the suspen-

sion-rod at the middle, due to the elevation of the tie
;
the

weight upon one half of the truss being 24,000 pounds.

692. In a building 119 feet long, and 80 feet wide

to the centres of bearings, and having the side walls pierced

for seven windows each, state how many roof trusses there

should be.

Which of the designs given, having a tie horizontal from

the feet of the rafters, would be appropriate for the case ?

The roof is to be 25 feet high at middle, and to have

the interior space along the middle free from timber. The
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load upon the roof is to be taken at 50 pounds per foot

horizontal, upon the tie-beam at 40 pounds to the foot,

and upon the straining beam at 5 pounds per foot.

Make a force diagram, and from it show the strains in

each piece.

.Compute the dimensions of the several timbers, which

are all to be of Georgia pine ;
the rafter being 9 inches

thick below the straining-beam and 6 inches above, and

the iron work being subjected to a tensile strain of 9000

pounds per inch.



CHAPTER XXIV.

TABLES.

ART. 693. Tables I. to XXI. Their Utility. Rules for

determining the required dimensions of the various timbers

in floors are included in previous chapters. These rules are

carefully reduced to the forms required in practice. In using

them, it is only needed to substitute for the various alge-

braic symbols their proper numerical values, and to perform

the arithmetical processes indicated, in order to arrive at the

result desired.

To do even this simple work, however, requires care and

patience, and these the architect, owing to the multiplicity

of detail demanding time and attention in his professional

practice, frequently finds it difficult to exercise. To relieve

him of this work, the first twenty-one of the following tables

have been carefully computed. Tables I. to XXI. afford the

data for ascertaining readily the dimensions of the beams

and principal timbers required in floors of dwellings and first-

class stores. Tables XVII., XVIII. and XIX. refer to

beams of rolled-iron ;
the others to those of wood.

694. Floor Beams of Wood and Iron (I. to XIX. and

XXI.) In these tables will be found the dimensions of Floor

Beams and Headers, of Hemlock, White pine, Spruce and

Georgia pine ;
for Dwellings and for First-class stores.

Tables XVIII. and XIX. exhibit the distances from cen-

tres at which Rolled-iron Beams are required to be placed
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in Banks, Office Buildings and Assembly-Rooms, and in

First-class Stores.

695. Floor Beams of Wood (I. to Till.). In these

tables the recorded distance from centres is in inches, and is

for a beam one inch thick, or broad. The required distance

from centres is to be obtained by multiplying the tabular dis-

tance by the breadth of the given beam.

For example : Let it be required to ascertain the dis-

tance from centres at which white pine 3 x 10 inch beams,

1 6 feet long in the clear of the bearings, should be placed

in a dwelling.

By reference to Table II.,
" White Pine Floor Beams One

Inch Thick, for Dwellings, Office Buildings, and Halls of

Assembly," we find, vertically under 10, the depth, and

opposite to 16, the length, the dimension 4-5. This is

the distance from centres for a beam one inch broad. Then,

since the given beam has a breadth of 3 inches,

3><4-5= 13-5

equals the required distance from centres for beams 3

inches broad. Therefore, 3 x 10 inch white pine beams

with 16 feet clear bearing, should, in a dwelling, etc., be

placed 13^ inches from centres.

Tables I. to IV. were computed from formula (14$-),

cl* = ibd 3

which, with b= I, and putting c in inches, becomes

'

(308.)



FLOOR BEAMS AND HEADERS. 497

Tables V. to VIII. were computed from formula (149.),

cl
3 = kbds

which, with =i, and with c in inches, becomes

\2kd3

c = - (307.)

696. Hcader of Wood (IX. to XVI.). (See Art. 142.)

The results recorded in these tables show the breadth of

headers which carry tail beams one foot long. The tabular

breadth, if multiplied by the length in feet of the given tail

beam, will give the breadth of the required header.

For example : Let it be required to ascertain the breadth

of a Georgia pine header 20 feet long, 15 inches deep,

and carrying tail beams 12 feet long, in the floor of a first-

class store. By referring to Table XVI., 4 '

Georgia Pine

Headers for First-class Stores," at the intersection of the

vertical column for 15 inches depth and the horizontal

line for 20 feet length, we find the dimension io6. This

is the breadth of the header for each foot in length of the

tail beams. As the tail beams in this case are 12 feet long,

therefore 12x1-06=12.72, equals the required breadth of

the header in inches.

The first four (IX. to XII.) of these tables were computed
from formula (156.),

i6Fr(d-i?

which, when reduced (putting r = 0-03, / = 90 and

n = i) becomes
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The second four (XI H. to XVI.) of these tables were com-

puted from the same formula, (156-}, by putting r = 0-04,

f= 275 and n = i
;

which reduction gives

(309,

697. Elements of Rolled-Iron Beams (XVII.). Table

XVII. contains the dimensions of cross-section and the

values of /, the moment of inertia, for 1 19 of the rolled-

iron beams of American manufacture in use. These values

are required in using the rules in Chapter XIX., by which

the capacities of the beams are ascertained. (See Arts. 479
to 482, 485 to 492, 501, 511, 512, 514, 517, 519, 521, 523,

etc.)

The values of / were computed by formula (213.)

698. Rolled-Iron Beams for Office Buildings, etc.

(XVIII.). Table XVI II. contains the distances from centres,

in feet, at which rolled-iron beams should be placed, in the

floors of Dwellings, Banks, Office Buildings and Assembly
Halls. (See Arts. 500 and 501.)

These distances were computed by formula (237.),

__ y_'

I
3

420

699. Rolled-Iron Beams for First-class Stores (XIX.).

Table XIX. contains the distances from centres, in feet, at

which rolled-iron beams should be placed, in the floors of

First-class Stores. (See Arts. 504 and 505.)
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These distances were computed by formula (239.\

148-87 y
I
3

960

700. Example. As an example to show the uses of

Tables XVIII. and XIX. : Let it be required to know the dis-

tances from centres at which 9 inch 84 pound Phcenix

rolled-iron beams should be placed, on walls with a span or

clear bearing of 18 feet, to form a floor to be used in an

Office Building or Assembly Room.

In Table XVIII., the one suitable for this case, at the

intersection of the vertical column for 18 feet, with the

horizontal line for the given beam named above, we find

4-51, or 4^ feet, the required distance from centres.

For a First-class Store (see Table XIX.), these beams, if

of the length stated, should be placed 2-66, or 2 feet

and 8 inches from centres.

701. Constants for Use in the Rules (XX.). Constants

for use in the rules in previous chapters are to be found in

Table XX.
These constants, for the 13 American woods named

and for mahogany, have been computed from experiments

made by the author in 1874 and 1876 expressly for this work

(Arts. 704 to 707). For the values of B and F, the

lowest and highest of the two series of experiments are

taken, and the average given for use in the rules.

The constants for the other woods named in the table

have been computed for this work from experiments made

by Barlow, and recorded in his work on the Strength of

Materials.

The constant F, for American wrought-iron, was com-
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puted by the author from six tests made by Major Anderson

on rolled-iron beams at the Trenton Iron Works, and from

two tests made at the works of the Phoenix Iron Co. of

Philadelphia. The beams upon which these tests were made

were from 6 to 15 inches deep and from 12 to 27

feet long.

The values of F for the other metals, ajid of B for

all the metals, have been computed from tests made by trust-

worthy experimenters, such as Hodgkinson, Fairbairn, Kir-

kaldy, Major Wade and others. The average of these

values may be used in the rules, for good ordinary metal.

For any important work, however, constants should be

derived from tests expressly made for the work, upon fair

specimens of the particular kind of metal proposed to be

used.

702. Solid Timber Floors (XXI.). The depths re-

quired for beams when placed close to each other, side by

side, without spaces between them, may be found in Table

XXI.

This is not an economical method of construction. More

timber is required than in the ordinary plan of narrow, deep

beams, set apart. But a solid floor has the important
characteristic of resisting the action of fire nearly as long,

if not quite, as a floor made with rolled-iron beams and

brick arches.

A floor of timber as usually made, with spaces between

the beams, resists a conflagration but a very short time.

The beams laid up like kindling-wood, with spaces between,

afford little resistance to the flames
; but, when laid close,

they, by the solidity obtained, prevent the passage of the

air. The fire, thus retarded and confined to the room in

which it originated, may be there extinguished before doing
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serious damage. Floors built solid should be plastered

upon the underside. The plastering lath should be nailed to

narrow furring strips, half an inch thick, and the plastering

pressed between the lath so as to till the half inch space

with mortar. The mortar used should contain a large

portion of plaster of Paris, and be finished smooth with it.

Owing to the fire-proof quality of this material, it will pro-

tect the lath a long time. Thus constructed, a solid floor

will possess great endurance in resisting a conflagration.

The timbers should be attached to each other by dowels.

These will serve, like cross-bridging, to distribute the

pressure from a concentrated weight to the contiguous

beams.

The depths given in Table XXI. were computed by
formulas (311.) and (312.). These were reduced from form-

ula (130.). which is

In this formula U cfl, c and / being taken in feet.

If c be taken in inches, then for c we have
, and

U=-fL Putting rl for 8 (Art. 313) we have

In a solid floor the breadth of the beams will equal the

distances from centres, or b c (c now being in inches).
In the formula these cancel each other

;
or

?

= Fd'r and8x 12

<*
3 =~l; (*)
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For dwellings and halls of assembly, we have taken

(Art. 115) f at 90, or 70 for the superincumbent load

and 20 for the materials of construction. In a solid floor,

however, the weight of the timbers differs too much to

permit an average of it to be used as a constant in the

formula. The weight of the plastering, furring and floor-

plank is constant, and may be taken at 12 pounds. To

this add 70 for the superincumbent load, and the sum, 82,

.plus the weight of the beam, will equal /, the total load.

The weight of the beam will equal the weight of a foot

superficial, inch thick, of the timber, multiplied by the depth

of the beam
; or, putting y equal to the weight of one

foot, inch thick, of the timber, we have its total weight equal

to yd ; or, f = %2 + yd. Substituting this value for f in

formula (310.), and putting r = 0-03, then we have

19-2 x o-o^F

This formula is general for floors of dwellings, office

buildings, and halls of assembly. As the symbol for the

depth is found on both sides of this equation, the depth for

any given length can not be directly obtained by it
;
a modi-

fication is needed to make the formula practicable.

An inspection of the formula shows that the depth will

be very nearly in direct proportion to the length. By a

simple transformation of the symbols, a formula is obtained

which will give the length for any given depth. By an ap-

plication of this formula to the two extremes of depth and

length for each kind of material, the relative values of d

and / may be found. The results for the two extremes in

each case will differ but little. An average may be used as

a constant for all practical lengths, without appreciable
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error. The values of d have been computed for the four

woods named below, and the average value found to be for

Georgia pine, d = O-3I4/

Spruce, d =. o-$6$l

White pine, d = 0-3897

Hemlock, d o-^gl

An average value of y, the weight per foot superficial,

inch thick, may be taken as follows : for

Georgia pine, y 4

Spruce, y = 2%

White pine. y = 2-J

Hemlock, y 2

With these values of y and d, formula (311.} becomes

practicable, and will give the required depth for any given

length of floor beams, of the four woods named, for the

solid floors of dwellings, office buildings, and halls of

assembly.

For the floors of first-class stores, taking 250 pounds
as the superincumbent load and 13 pounds as the weight
of the plastering, flooring, etc., and putting r = 0-04 we

have, in formula (310.),

This formula is general for floors of first-class stores. The

values of d have been computed for the extremes of

lengths, and an average found to be as follows : for

Georgia pine, d = -4/

Spruce, d =
White pine, d =
Hemlock, d = -so6/
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With these values of d, and the above values of y, for-

mula (312.) will give the depths of solid floors for first-class

stores.

The depths of solid floors in Table XXL, for dwellings,

office-buildings and halls of assembly, were computed by

formula (311.), and those for first-class stores by formula

(312.)

703. Weights of Building Materials (XXII.). Table

XXII. contains the weight per cubic foot of various build-

ing materials.

704. Experiments on American Woods (XXIII. to

XE,VI.). Tables XXIII. to XLVL, inclusive, contain the

results of experiments upon six of our American woods such

as are more commonly used as building material.

These experiments, as well as those of 1874 (Art. 701),

were made upon a testing machine constructed for the

author, and after his plan, by the Fairbanks Scale Co. It is

a modification of the Fairbanks scale, a system of levers

working on knife edges, and arranged with gearing and

frame by which a very gradual pressure is brought to bear

upon the piece tested, which pressure is sustained by the

platform of the scale and thus measured.

By an application of clock-work, devised by Mr. R. F.

Hatfield, son of the author, the poise upon the scale beam is

kept in motion by the pressure upon the platform, and is

arrested at the instant of rupture of the piece tested. For

the moderate pressures (under 2000 pounds) required,

this machine is found to work satisfactorily.

705. Experiments by Transverse Strain (XXIII. to

XXXV., Xi.il. and XLIII.). Tables XXIII. to XXXV.
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contain tests by Transverse Strain, upon six of the thirteen

woods tested by the author for this work.

At intervals, as shown, the pressure was removed and the

set, if any, measured. It was found that in many instances

a decided set had occurred before the increments of deflec-

tion had ceased being equal for equal additions of weight.

It was thus made plain that some modification of this rule

for determining the limit of elasticity must be made. To
fix this limit clearly inside of any doubtful line, 25 per

cent of the deflection obtained, while the increments of de-

flection remained equal for equal additions of weight, was

deducted, and the remainder taken as the deflection at the

limit of elasticity.

With this deflection, the values of the constants e and

a in Table XX. were computed (Art. 701).

The load upon a beam, determined by the rules with the

constants restricted within this limit, will not, it is confident-

ly believed, be subject to set
;

or if, as is claimed by
Professor Hodgkinson, any deflection, however small, will

produce a set, that this set will be so slight and of such a

nature as not to be injurious, or worthy of consideration.

A resume of the results of Tables XXIII. to XXXV. is

given in Tables XLII. and XLIII.

The values of F and B, given in Table XX., were

derived, not alone from the results given in these tables,

but also from results of the other experiments made in 1874.

(Art. 701.)

706. Experiments by Tensile and Sliding Strains

(XXXVI. to XXXIX., XL.IV. and XLV.). Tables XXXVI. and

XXXVII. contain tests of the resistance to tensile strain of

six of the more common American woods.

A rhiimt of the results is given in Table XLIV.
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Tables XXXVIII. and XXXIX. give tests made to show
the resistance to sliding of the fibres in six of the more

common American woods. These experiments were made

to ascertain the power of the several woods to resist a force

tending to separate the fibres by sliding, in the longitudinal

direction of the fibres. The rafter of a roof, when stepped

into an indent in the tie-beam, exerts a thrust tending to

split off the upper part of the end of the tie-beam. A pin

through a tenon, when subjected to strain, tends to split out

the part of the tenon in front of it. These are instances in

which rupture may occur by the sliding of the fibres longi-

tudinally, and a knowledge of the power of the various

woods to resist it, as shown in these tables, and as condensed

in Table XLV., will be useful in apportioning parts subject

to this strain. The symbol G, in Table XX., represents

in pounds the sliding resistance to rupture per square inch

superficial, and is equal to the average of the results of the

experiments in Table XLV. A discussion to show the

application of these results is omitted as being uncalled for

in a work on the Transverse Strain. For its treatment, see

" American House Carpenter/' Arts. 301 to 303, where H,

the value of each wood, is taken at \ of the resistance to

rupture.

707. Experiments by Crushing Strain (XL., XLI. and

XL.VI.). Tables XL. and XLI. contain tests of resistance to

crushing, in the direction of the fibres, of six of the more

common of our American woods. The pieces submitted to

this test were from one to two diameters high.

A rtsumt of the results is given in Table XLVL
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TABLE I.

HEMLOCK FLOOR BEAMS ONE INCH THICK, FOR DWELLINGS,
OFFICE BUILDINGS, AND HALLS OF ASSEMBLY.

DISTANCE FROM CENTRES (in inches).

For Beams Thicker than One Inch, see Arts. 693 and 695.

LENGTH



TABLE II.

WHITE PINE FLOOR BEAMS ONE INCH THICK, FOR DWELLINGS,

OFFICE BUILDINGS, AND HALLS OF ASSEMBLY.

DISTANCE FROM CENTRES (in inches}.

For Beams Thicker than One Inch, see Arts. 693 and 695.

LENGTH



TABLE III.

SPRUCE FLOOR BEAMS ONE INCH THICK, FOR DWELLINGS,

OFFICE BUILDINGS, AND HALLS OF ASSEMBLY.

DISTANCE FROM CENTRES (in inches).

For Beams Thicker than One Inch, see Arts. 693 and 695.

LENGTH
BETWEEN
BEARINGS

(in feet}.



TABLE IV.

GEORGIA PINE FLOOR BEAMS ONE INCH THICK, FOR DWELL-

INGS, OFFICE BUILDINGS, AND HALLS OF ASSEMBLY.

DISTANCE FROM CENTRES (in inches).

For Beams Thicker than One Inch, see Arts. 693 and 695.

LENGTH
BETWEEN
BEARINGS

(in feet).



TABLE V.

HEMLOCK FLOOR BEAMS ONE INCH THICK, FOR FIRST-CLASS

STORES.

DISTANCE FROM CENTRES (in inches).

For Beams Thicker than One Inch, see Arts. 693 and 695.

LENGTH



TABLE VI.

WHITE PINE FLOOR BEAMS ONE INCH THICK, FOR FIRST-

CLASS STORES.

DISTANCE FROM CENTRES (in inches).

For Beams Thicker than One Inch, see Arts. 693 and 695.

LENGTH



TABLE VII.

SPRUCE FLOOR BEAMS ONE INCH THICK, FOR FIRST-CLASS

STORES.

DISTANCE FROM CENTRES (in inches).

For Beams Thicker than One Inch, see Arts. 693 and 695.

LENGTH
BETWEEN
BEARINGS

(in feet).



TABLE VIII.

GEORGIA PINE FLOOR BEAMS ONE INCH THICK, FOR FIRST-

CLASS STORES.

DISTANCE FROM CENTRES (in inches).

For Beams. Thicker than One Inch, see Arts, 693 and 695.

LENGTH
BETWEEN
BEARINGS

(in feet}.



TABLE IX.

HEMLOCK HEADERS FOR DWELLINGS, OFFICE BUILDINGS, AND

HALLS OF ASSEMBLY.

THICKNESS OF HEADER (in inches) FOR TAIL BEAMS ONE FOOT LONG.

For Tail Beams Longer than One Foot, see Arts. 693 and 696 a

LENGTH
BETWEEN

BEARINGS

(in feet).



TABLE X.

WHITE PINE HEADERS FOR DWELLINGS, OFFICE BUILDINGS,
AND HALLS OF ASSEMBLY.

THICKNESS OF HEADER (in inches) FOR TAIL BEAMS ONE FOOT LONG.

For Tail Beams Longer than One Foot, see Arts. 633 and 696.

LENGTH
BETWEEN

BEARINGS

(in feet}.



TABLE XL

SPRUCE HEADERS FOR DWELLINGS, OFFICE BUILDINGS, AND

HALLS OF ASSEMBLY.

THICKNESS 'OF HEADER (in inches) FOR TAIL BEAMS ONE FOOT LONG.

For Tail Beams Longer than One Foot, see Arts. 693 and 696.

LENGTH
BETWEEN

BEARINGS

(in feet).



TABLE XII.

GEORGIA PINE HEADERS FOR DWELLINGS, OFFICE BUILDINGS,

AND HALLS OF ASSEMBLY.

THICKNESS OF HEADER (in inches) FOR TAIL BEAMS ONE FOOT LONG.

For Tail Beams Longer than One Foot, see Arts. 693 and 696.

LENGTH
BETWEEN

BEARINGS

(in feet).



TABLE XIII.

HEMLOCK HEADERS FOR FIRST-CLASS STORES.

THICKNESS OF HEADER (in inches) FOR TAIL BEAMS ONE FOOT LONG.

For Tail Beams Longer than One foot, see Arts. 693 and 696.

LENGTH
BETWEEN

BEARINGS

(in feet).



TABLE XIV.

WHITE PINE HEADERS FOR FIRST-CLASS STORES.

THICKNESS OF HEADER (in inches) FOR TAIL BEAMS ONE FOOT LONG.

For Tail Beams Longer than One Foot, see Arts. 693 and 696.

LENGTH
BETWEEN

BEARINGS

(in feet}.



TABLE XV.

SPRUCE HEADERS FOR FIRST-CLASS STORES.

THICKNESS OF HEADER (in inches) FOR TAIL BEAMS ONE FOOT LONG.

for Tail Beams Longer than One Foot, see Arts. 693 and 696.

LENGTH
BETWEEN

BEARINGS

(in feet).



TABLE XVI.

GEORGIA PINE HEADERS FOR FIRST-CLASS STORES.

THICKNESS OF HEADER (in inches) FOR TAIL BEAMS ONE FOOT LONG.

For Tail Beams Longer than One Foot, see Arts. 693 and 696.

LENGTH
BETWEEN
BEARINGS

(in feet}.



TABLE XVII.

ELEMENTS OF ROLLED-IRON BEAMS.

See Art. 697.

NAME.



TABLE XVII. (Continued^

ELEMENTS OF ROLLED-IRON BEAMS.

See Art. 697.



TABLE XVII. (Continued.)

ELEMENTS OF ROLLED-IRON BEAMS.

See Art, 697.

NAME.



TABLE 1KM\\. (Continued.)

ELEMENTS OF ROLLED-IRON BEAMS.

See Art. 697.

NAME.



TABLE XVIII.

ROLLED-IRON BEAMS IN DWELLINGS, OFFICE BUILDINGS, AND HALLS
OF ASSEMBLY.

DISTANCES FROM CENTRES (in feet}.

See Arts. 694, 698 and 7OO.

NAME.



TABLE XVIIL (Continued.}

ROLLED-IRON BEAMS IN DWELLINGS, OFFICE BUILDINGS, AND HALLS

OF ASSEMBLY.

DISTANCES FROM CENTRES (in feet).

See Arts. 694, 698 and 7OO.

NAME.



TABLE XVIII. (Continued^

ROLLED-IRON BEAMS IN DWELLINGS, OFFICE BUILDINGS,

AND HALLS OF ASSEMBLY.

DISTANCES FROM CENTRES (in feet).

See Arts. 694, 698 and 7OO.



TABLE lVl\\. (Continued.)

ROLLED-IRON BEAMS IN DWELLINGS, OFFICE BUILDINGS,

AND HALLS OF ASSEMBLY.

DISTANCES FROM CENTRES (in feet).

See Arts. 694, 698 and 7OO.

LENGTH

(infect)

BETWEEN

BEARINGS.



TABLE XIX.

ROLLED-IRON BEAMS IN FIRST-CLASS STORES.

DISTANCES FROM CENTRES (in feet).

See Arts. 694, 697, 699 and 7OO.

NAME.



TABLE XIX. (Continued^

ROLLED-IRON BEAMS IN FIRST-CLASS STORES.

DISTANCES FROM CENTRES (in feet}.

See Arts. 694, 697, 699 and 7OO.

NAME.



TABLE XIX. (

ROLLED-IRON BEAMS IN FIRST-CLASS STORES.

DISTANCES FROM CENTRES (in fcef).

See Arts. 694, 697, 6O9 and 7OO.



TABLE XIX. (Continued.}

ROLLED-IRON BEAMS IN FIRST-CLASS STORES.

DISTANCES FROM CENTRES (in feet}.

.See Arts, 694, 697, 699 and 7OO.

LENGTH

(in

feet)

BETWEEN

BEARINGS.



TABLE XX.

See Arts. 7OI, 7O5 and 7O6.

The larger figures five the

average^ for use in the
rules.



TABLE XX. (Continued.}

See Arts. 7O 1 , 7O3 and 7O6.

The larger figures gh>e the
aver-age\ for use in the
rules.



TABLE XXI.

SOLID TIMBER FLOORS.

DEPTH OF BEAM (in inches).

See Art. 7O2.

LENGTH

BETWEEN

1

BEARINGS

(in

feet).

||



TABLE XXII.

MATERIALS USED IN THE CONSTRUCTION OR LOADING OF

BUILDINGS.

WEIGHTS PER CUBIC FOOT.

As per Barlow, Gallier, Ilaswell, Hursf, Rankine, Tredgold, Wood
and the Author.

MATERIAL.



TABLE XX II. (Continued^

MATERIALS USED IN THE CONSTRUCTION OR LOADING OF

BUILDINGS.

WEIGHTS PER CUBIC FOOT.

As per Barlo-w, Gallier, Haswell, Hurst, Rankine, Tredgold, Wood
and the Author.

MATERIAL.



TABLE XX 1 1. (Continued.)

MATERIALS USED IN THE CONSTRUCTION OR LOADING OF
BUILDINGS.

WEIGHTS PER CUBIC FOOT.

As per Barlow, Gallier, Hasivell, Hurst, Rankine, Tredgoid, Wood
and the Author.

MATERIAL.



TABLE XXIII.

TRANSVERSE STRAINS IN GEORGIA PINE.

LENGTH i 6 FEET. BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

NUMBER OF /

EXPERIMENT. (



TABLE XXIV.

TRANSVERSE STRAINS IN LOCUST.

LENGTH 1-6 FEET BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

NUMBER OF )



TABLE XXIV. (Continued.}

TRANSVERSE STRAINS IN LOCUST

LENGTH 1-6 FEET BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

NUMBER OF )

i

EXPERI- V

MENT. )



TABLE XXV.

TRANSVERSE STRAINS IN WHITE OAK.

LENGTH 1-6 FEET BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

NUMBER OF )



TABLE XXVI.

TRANSVERSE STRAINS IN SPRUCE.
i

LENGTH 1-6 FEET BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

NUMBER OF )



TABLE XXVII.

TRANSVERSE STRAINS IN SPRUCE.

LENGTH i 6 FEET BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

NUMBER OF )



TABLE XXVIL (Continued)

TRANSVERSE STRAINS IN SPRUCE

LENGTH 1-6 FEET BETWEEN BEARINGS.

'See Arts. 7O4 and 7O5.

NUMBER OF )



TABLE XXVIII.

TRANSVERSE STRAINS IN SPRUCE.

LENGTH 1-6 FEET BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

NUMBER OF )



TABLE XXVI 1 1. (Continued)

TRANSVERSE STRAINS IN SPRUCE

LENGTH i 6 FEET BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

NUMBER OF i



TABLE XXIX.

TRANSVERSE STRAINS IN WHITE PINE.

LENGTH i 6 FEET BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

NUMBER OF )



TABLE XXX.

TRANSVERSE STRAINS IN WHITE PINE.

LENGTH 1-6 FEET BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

NUMBER OF )



TABLE XXX. (Continued^)

TRANSVERSE STRAINS IN WHITE PINE.

LENGTH 1-6 FEET BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

1 NUMBER OF )



TABLE XXXI.

TRANSVERSE STRAINS IN WHITE PINE.

LENGTH i 6 FEET BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

NUMBER OF )



TABLE XXXL (Continued)

TRANSVERSE STRAINS IN WHITE PINE.

LENGTH 1.6 FEET BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

NUMBER OF )



TABLE XXXII.

TRANSVERSE STRAINS IN WHITE TINE.

LENGTH i FOOT BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

NUMBER OF ]



TABLE XXXIII.

TRANSVERSE STRAINS IN HEMLOCK.

LENGTH i 6 FEET BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

NUMBER OF J



TABLE XXXIV.

TRANSVERSE STRAINS IN HEMLOCK.

LENGTH 1-6 FEET BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

NUMBER OF)



TABLE XXXIV. (Continued)

TRANSVERSE STRAINS IN HEMLOCK

LENGTH i 6 FEET BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

! NUMBER OF )



TABLE XXXV.

T R A N S VE R S E STRAINS IN HEMLOCK

LENGTH 1-6 FEET BETWEEN BEARINGS.

See Arts. 7O4 and 7O5.

NUMBER OF )



TABLE XXXVI.

TENSILE STRAINS IN GEORGIA PINE.

See Arts. 7O4 and 7O6.

NUMBER OF )



TABLE XXXVII.

TENSILE STRAINS IN SPRUCE.

See Arts. 7O4 and 7O6.

NUMBER OF )

EXPERI- \\ 143 144



TABLE XXXVIII.

SLIDING STRAINS IN GEORGIA PINE.

See Arts. 7Q4- and 7O6.

^ '

NUMBER OF )



TABLE XXXIX.

SLIDING STRAINS IN SPRUCE.

See Arts. 7O4 and 7O6.

NUMBER OF )

EXPERI- >

MENT.
)



TABLE XL.

CRUSHING STRAINS IN GEORGIA PINE.

See Arts. 7O4 and 7O7.

NUMBER OF )

EXPERI- V

MENT. )



TABLE XLI.

CRUSHING STRAINS IN SPRUCE.

See Arts. 7O4 and 7O7.

NUMBER OF
)

EXPERI- V

WENT.
)



TABLE XLII.

TRANSVERSE STRAINS.

BREAKING WEIGHTS (in pounds) PER UNIT OF MATERIAL = B.

See Arts. 7O4 and 7O5.



TABLE XLIII.

DEFLECTION.

VALUES OF CONSTANT,'^.

See Arts. 7O4 and 7O5.

w

-

1
M



TABLE XLIV.

TENSILE STRAINS.

BREAKING WEIGHTS (in pounds) PER SQUARE INCH OF SECTIONAL AREA, ==

See Arts. 7O4 and 7O6.

GEORGIA
PINE.



TABLE XLV.

.SLIDING STRAINS.

BREAKING WEIGHTS (in pounds) PER SQUARE INCH OF SLIDING SURFACE, = G.

See Arts. 7O4 and 706.

GEORGIA
PINE.



TABLE XLVI.

CRUSHING STRAINS.

CRUSHING WEIGHTS (in founds) PER SQUARE INCH OF SECTIONAL AREA, = C.

See Arts. 7O4 and 7O7.

GEORGIA
PlNE:



DIRECTORY,

DIGEST OF THE PRINCIPAL RULES.

BELOW may be found the numbers of such formulas, arti-

cles, figures and tables as are particularly applicable in any

given problem.

By reference to these, the rules needed in any certain

case, occurring in practice, may be more readily found than

by either the index or table of contents.

LEVERS WOOD.

'

Strain at wall,
"
any point, . Figs. 27, 28, 33, (4.),

Size when at the point of rupture,
" to resist rupture safely,

f Weight, . .* .

a5 I Length,

| -I Breadth,
E

Depth,

Deflection, . . . . .

.(6.)

(19.\ (36.}

. (123.)

(127.)

. (128)

(129)

(121.)



~o

>%

I
I
"5
3

DIRECTORY. 567

f Strain at wall, . . . (75.)

" "
any point, . . Fig. 46, (76.)

Size when at the point of rupture, . . (18.)

1
' to resist rupture safely, . . (20.), (77.)
" at any point to resist rupture safely, (77.)

[ Shape of lever, Fig. 47

Weight, . (186.)

Length, (187.)

| \ Breadth, (188.)

Depth, (189.)

_ Deflection, . . (140)

Strain at wall, Figs. 45, 51

"
any point, . .Figs. 45, 48, 50, 51

Size " " " Art. 227

Shape of lever, Figs. 31, 49

Depth at any point, (80.)

LEVERS ROLLED-IRON.

Load at end. Flexure. Weight, . . . .

Size, . . . . (224),

Load uniformly distributed. Flexure. Weight, ... (230)

Size,.
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1

SINGLE BEAMS WOOD.

'

Strain at middle, . . .

" "
any point, ....

Size when at the point ofrupture, (9.), (11.)

44 to resist rupture safely,
" at any point to resist rupture safely,

| -I Weight,

Length, '.".*.".
Breadth,

Depth, *. Y '.

Constant B, . . . .

i Pressure on each support,

['Weight, .... . .

g
j

Length, . . . .

J Breadth, .

\
. .

Depth,

Deflection,

. (9.)

Fig. 29

(12.),(14.)

. .(21.)

. (37.)

. .(13.)

.(11.)

..(10.)

(<?), (4-)

(122.)

(125.)

(126.)

(120.)

E

J |J
b
X

"

Strain at middle, . ... (44-)
" " the load, Art. 190

-
any point, . Figs. 34, 35. (44-), (45.)

Size when at the point of rupture, . . . (16.)
" to resist rupture safely, (23.), (46.), (47.), (48.),

(49.), (50.)

El
3 I

f f Strain at middle,
44 "

any point, .

| i Size when at the point of rupture,

to resist rupture safely,
I-EH

|

Shape of beam,....
( Pressure on each support, .

['Weight,

g Length, . . ....
I

-j Breadth,

Depth,

Deflection, ....

Art. 59, (72.)

Fig. 42, (71.)

. . (17.)

- Figs. 43, 44

. (3.) t (4)

. (131.)

?
.)

. (135.)
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f
r Strain at any point, Figs. 36, 37, (53.), (54.), (55.)

" locations of weights, Art. (53, (51.), (52.)

Size to resist rupture safely, (30.), (31.), (56.), (57.)

. f f I

Strain at any point, Fig. 38, (61.), (62.),

-i J
2

1

W
o
rt -<

I o

" locations of weights, (58.), (59.), (60.)

I Size to resist rupture safely, (65.\ (66.), (67.)

~ f Rupture. Strain at any point, Figs. 52, 53, (<$-*) (95-),

1 1

31
I

Rupture. Size to resist safely,

| I Flexure.
" " <4 "... (189.\ (193.)

Loaded
( Rupture. Strains, Figs. 39, 4, 41, Arts. 196 to 203,

210, 211

SINGLE BEAMS ROLLED-IRON.

f General rule, ....... (216.)

t
|
Weight, (217.)

|
-! Length, (218.)

E Deflection, . .... (219.)

( Moment of inertia
> , (220.)

Load at any point. Flexure. Weight, ....
"

'!
" -

Size, . . . (221.), (222.)

Load uniformly distributed. Flexure. Weight, '. . . (228.)

Size,



5/0 DIRECTORY.

I

FLOOR TIMBERS WOOD.

General rule,.......
Dwellings, assembly rooms, etc., . . .

General rule,.......
f General rule, .... (142.),

I

Distance from centres, . I. to IV., (144),

\

Length, .......
\
Breadth,..... . .

( Depth, . . ......
f General rule,..... (U8.),

\
Distance from centres, V. to VIII., (150.),

Length, .......
Breadth, .......

I Depth, . .....
Solid floors of wood, XXL, (310.), (311.),

(25.)

(141-)

(143.)

(306.)

(145.)

(146.)

(307.)

(151-)

(152.)

(153.)

(312)

f Rupture. General rule,

! f General rule,

I
j
| J

Dwellings, etc.,

j UH
j First-class stores,

. . . (27.)

. . . . (156.)

IX. to Xn., 382, (308.)

XIII. to XVI., 383, (309.)

With one header (29.)
" two headers, (32.), (33.), (34.), (35.), (92.). (93.)
" three " .... (97.),(106.)

g
-

[

General rule, .... (157.), (161.)

|| j Dwellings, etc., . . (158.), (162.)

I First-class stores, . . . (159), (163.)

(
General rule, . (164.). (107.), (170.), (174),

(179.), (183.), (186.)

rgl , Dwellings, etc., (165.), (168.), (175.), (180.),
g
| (184\(187.)

|

First-class stores, (166),(169.\ (176), (181.),

(185.), (188.)

S!j [

General rule, . Figs. 55, S^(190), (194)

1 1
i Dwellings, etc., . . (191.), (195.)

[ First-class stores, . . . (192.), (196.)
Girders. Rupture. General rule, . . . Art. (37

X *

o
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FLOOR REAMS ROLLED-IRON.

| f ,j
f General rule (234.)

Dwellings, etc., . . . XVIII., (236.\

J i
E

|

First-class stores, . XIX.,
fa I

2 f d f
General rule, .....

|
Dwellings, assembly rooms, etc., . . . (248.)

E
[

fe
I First-class stores, . . . . . (249.)

f f ,.: f General rule, (250.)

gl -\ Dwellings, assembly rooms, etc., . (251.)
~

L First-class stores, . . . . (252.)

f
General rule, . .... (253.)

2% j Dwellings, assembly rooms, etc.,

'

1
First-class stores, . (255. \ (257.), (259.)

f General rule, .... Art. 531
(A I

.
J Dwellings, assembly rooms, etc., . (260. )\

First-class stores, .

FRAMED GIRDERS.

Proportionate depth, (294-)

Number of bays, ........ (295.)

Strains in a framed girder, .... Pigs. 93, 94
"

diagonals, (296.)

Tensions in lower chord, ...... (297)
Areas of cross-section in lower chord, . . . (299)

" " " "
upper

"
. . (301), (303)

Unsymmetrical load, divided between the two supports,

Figs. 96, 97, (304.), (305.)
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TUBULAR IRON GIRDERS.

Load at middle. Area of flange, . (264), (65)
"

"any point.
" " "

(266.)

>s%
f
General rule,

" " "
. . . . (267 .)

o o 1 \
Banks and assembly rooms. Area of flange, (274-)

J

'l|
! First-class stores,

" " t4

(275.)

Thickness of web to resist shearing, . . . (268.)

Weight of girder, (270.), (271.)

Economical depth of girder, .... (276.), (277.)

CAST-IRON GIRDERS.

Load at middle. Breaking weight, (278)
- Safe area of flange, . (279.)

" "
any point. Breaking weight, .... (281.)

Safe area of flange, . . . (282.)

Two concentrated loads. Safe area of flange, . (285), (286)
Safe area of flange at middle, . . . (280.)

" " " " "
any point, . . . (283.)

"
depth at any point, . . . . (284.)

Arch girder, safe area of tie-rod, . . . (287.)

safe diameter of tie-rod, . (288.), (289.)

. Brick arch,
" " <

t (290.)

ROOF TRUSSES.

Comparison of designs, Art. 658

Strains derived graphically, .. . Arts. 660 to 668, 679
Horizontal and inclined ties, . Fig. 125, Arts. 669 to 671

Designing a roof, Arts. 672, 676
Load upon a roof, . . . . Arts. 673, 674, 675
Load upon each supported point in a truss, . Art. 677

" " the tie-beam, Art. 678

Measuring the strains, as in force diagram, . Art. 680
Arithmetical computation of strains, . . Art. 681

Dimensions of parts suffering tensile strains, Art. 682
" " " "

compressive strains, Arts. 683

to 687
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FLOOR-ARCHES TIE-RODS.

Horizontal strain, . (240.)

Uniformly distributed load, area of rod, . . . (241)

Load per superficial foot,
" " "

,
. . (242.)

Banks, assembly rooms, etc.,
" " "

. . . (243.)
" " Diameter of rod, . (245.)

First-class stores,
" "

. . (246.)
" " " area of rod, ; (244)

SHEARING.

With compound load on lever, . ... (38.)
" load at end of lever, (39.)

" on beam, (40.)

Nature of the strain, . . Fig. 30, Arts. 172, 173, 174

Web of tubular girder, . . . . . . (268.)

PROMISCUOUS.

Bridle irons, for headers, (28.)

Bearing surface of beam on wall, .... (41-)

Shape of beam and lever, . . Figs. 31, 43, 44, Art. 178
"

depth at any point, . . . (?4)

Cross-bridging, .... Chap. XVIII., (201.)

Deflection illustrated, * Figs. 57 to 64

Moment of inertia illustrated, . . . Figs. 69 to 72

Forces in equilibrium illustrated, . . Figs. 81 to 84

Diagrams of forces illustrated, . . . Figs. 85 to 88

Force diagrams, . . . Chapters XXII. and XXIII.

Building materials, weights of ... Table XXII.



INDEX.

PAGE

American House Carpenter, sliding strains 506
" manufacture of rolled iron -beams, . . 313

" woods, constants (or, 499
"

experiments on 504
"

wrought-iron, constant for, 499

elasticity of, 232

Anderson, experiments made by Major 500

Angle irons in plate beam, 312

Approximate formulas discussed, 183
" value of resistances, 226, 227

Arch, area of cross-section of tie rod of floor 347

Arches and concrete floors, weights of, 340
"

for floors, general considerations, 345

tie -rods for brick 346
" where to place tie-rods in brick 348

Arched girder of cast-iron, and tie-rod 396
" substitute for iron, 398

Architect, his liability to err 28

tables save time of the, 495

too busy to compute by rules, 495

Architect's knowledge of construction 27

Area of cross-section, resistance, 31

" of tie-rod of floor arch, 347

Arithmetical computation of strains in truss, 486

progression, the sum, 147, 148

series , 151

"
coefficients form an, 226

Arithmetically computed strains 168

Ash, resistance of, ... 120
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PAGE

Assembly halls, formula for solid floors of, 502

rolled-iron beams for, 498

rooms, strains in, the same as in dwellings, 88

" and banks, load on floors of, 340, 341
" " load on floors of, 88

" " " " tubular girders for, 380
" "

rolled-iron beams for, 495
" " " " Table XVI1L, 526, 527
" "

carriage beams with two headers and one set

of tail beams, for 358
" rolled iron carriage beams with two headers and two sets

of tail beams, for, 354, 356
" rolled-iron carriage beams with three headers, for, 360, 362
"

rolled-iron headers for floors of, 349
" rule for floors in, 261

" " " tubular girders for, 380

tie-rods for floor arches of, 347

Auxiliary formula for carriage beams, 193

Baker, Strength of Beams, Columns and Arches, 446
" " " " " " "

ratio by, ...... 382
'* formula for posts, 446
" on compression of materials, 446

Banks, formula for solid floors of, 502
" load on tubular girder for 380
" rolled-iron beams for, 495, 498

" Table XVIII. , 526, 527
" "

carriage beams with two headers and one set of tail

beams, for, 358
" "

carriage beams with two headers and two sets of tail

beams, for, 354, 356
"

carriage beams with three headers, for 360, 362
" headers for floors of, 349

" tie-rods for floor arches of, 347
" rule for tubular girders for, 380

load on floors of, 340, 341

Barlow's constants for use in the rules, 499
"

experiments on woods, 233
"

expression for elasticity, 232

Bays in a framed truss, number of, 426, 428

Beam and lever compared, 244
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PAGE

Beam and lever compared, deflection in, 237

" " "
their symbols compared, 49

" device for increasing the strength of, ... 402

" distributed load on rolled-iron 337

" ends shaped to fit bearings, 122

" load for a given deflection in a, 245

" of economic form, 163

" "
equal strength, 163

" rules for dimensions of deflected 248

"
shaped as a parabola, 124

" values of U, /, b, d and & in a, 253
" " W, /, b, d " 6 " "

. 248
" with load distributed, rules for size of, 253

Beams, formula for deflection of, . 229
"

general rule for strength of, 92
" of dwellings, general rule for strength of, 89
" "

wood, their weight 79
"

.
" warehouses to resist rupture, 260

"
comparison of rolled-iron, plate and tubular, 367

" should not only be, but also appear safe, 211

strains in, graphically expressed, 177

Bearing surface, 122

" of beams on walls, 121

Bearings, beams shaped to fit, 122

Bending, a beam is to resist 211

and appearing dangerous, beam safe, yet 235
"

in good floors far within the elastic limit, 239, 243

its effects on the fibres, 35
" moment of inertia, resistance to, 314

rafter to be protected from, 479
" resistance to 221

Bent lever, equilibrium in, 42

Bow-string iron girder, 396
" " " " substitute for, 398
" " " "

unworthy of confidence, 396

Bow, Economics of Construction, 402,418,425
" has written on roofs, 459

Braces in truss, dimensions of, 490, 491

Breaking and safe loads compared, 68

" load of unit of material, 69
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PAGE

Breaking load, the portion to be trusted, 69
'*

weight, 267.

" "
compared with safe weight, 235

" " index of, 51

" "
per inch sectional area, tensile, Table XLIV., . . . 563

" " " "
surface, sliding, Table XLV., ...... 564

" " " unit of material, transverse, Table XLII., . . . 561

Breadth from given depth and distance from centres 92
"

in first-class stores, 265, 266

"
its relation to depth, 33

" of beam, rule for 248, 249
" " " in dwellings, 262, 263
" " " with distributed load, rule for, 254
" "

header, rule for, 271
" lever

" "
. . . 250, 256, 257

"
proportioned to depth, rule for 73

Brick arch a substitute for iron arch girder 398
" " for floor, rate of rise, 346
" " less costly than cast-iron arch, 399
" arches and concrete filling, 345

"
for floors, general considerations 345

" "
tie-rods for, 346

" where to place tie rods in, 348

Bridge, greatest load on, 80

Bridges, Conway and Menai Straits tubular, 367, 368, 378

Bridged beam, resistance of a, 304

Bridging causes lateral thrust, 303
"

for concentrated loads, 88

"
floor beams 302

"
in floors tested, ... 303

" increased resistance due to, . - .... 310
" measure of resistance of, 304
" number of beams resisting by, ... . 309

principles of resistance by, . 304
" useful to sustain concentrated loads, . . 309

Bridle iron and carriage beam 98, 195
" " load upon a,

*
98

" " rule for a, 98, 99
" "

to be broad, 99

Britannia and Conway tubular bridges 328, 368
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PAGE

Buckling or contortion of a tubular girder 377

Building materials, weights of, Table XXII., 533,534,535

Buildings require stability, 27
"

requisites for stability in, 28

Burbach, large rolled-iron beams from 313

Buttresses to support roofs without ties 459

Calculus and arithmetic compared, 318, 320, 321
" scale of strains 161

"
applied, result by the , 323, 325

"
coefficient defined by the 227

"
strain by distributed load, 157

" "
defined by differential 180, 18.;.

"
strains in lever by differential 168

Cape's Mathematics, forces shown in, 404

references to, 160, 164, 169

Carriage beam and bridle irons 98
" " " headers 94

"
auxiliary formula, 193

"
definition, 95

"
for dwellings, precise rule, 273, 285

" "
first-class sto.res, precise rule, 275, 282, 286

" ' formula not accurate, 183
" load on a, 98, 107
" of equal cross-section, 103
"

precise rule, h greater than n, 281

" " " " h less
" n 280

"
special ruleSj 281

" with one header, rule, 99
" "

." .

" "
rolled-iron 351

" " "
for assembly rooms, rolled-iron . . . 351
"

banks, rolled-iron 351
" " " " " "

dwellings 272
"

.

" " " rolled-iron 351
"

first-class stores, 273
"

rolled-iron . . . 352
" two headers, 101

" "
-

"
for dwellings, precise rule, 292

" 4< "
first-class stores, precise rule, . . 292

" "
equidistant headers, precise rule, 287

"
for dwellings, precise rule, 289
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PAGE

Carriage beam, with two equidistant headers, for first-class stores, precise

rule 289

" headers and one set of tail beams, 106

* " "
'I

" " " " " "
precise rule, . 283

" " " "
equidistant headers and one set of tail beams,

precise rule, 290

* " " " headers and one set of tail beams, for dwellings, 277

rolled-iron 358

" " " " headers and one set of tail beams, for first-class

stores 278

" " " " headers and one set of tail beams, for first-class

stores, rolled-iron 359

" " " headers and two sets of tail beams, . 104, 192, 194

c it . . " ...

precise rule, 279
" " " " ' "

rolled-iron . 353

) 275

precise rule, 282

" " " " headers and two sets of tail beams, for dwellings,

rolled-iron 354, 356
" " " " headers and two sets of tail beams, for first-class

stores . 276
" " " " headers and two sets of tail beams, for first-class

stores, rolled-iron 355, 357
" " "

three headers 195, 196, 197
" " for dwellings, rolled iron . , . 360, 362
" " " " " "

first class stores, rolled-iron 361, 364
" " " " the greatest strain at middle header, . 297
" " " " outside "

. 294
" " ' " " " middle >;

for dwellings 298
" " " "

headers, the greatest strain at outside header,

for dwellings, 295
" " ' "

headers, the greatest strain at middle header, for

first-class stores, 299
" " " "

headers, the greatest strain at outside header, for

first-class stores, 295
" " " headers and two sets of tail beams, . . . 200,207

Cast-iron, compression and tension in, 387
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PAGE

Cast iron resists compression more than tension, 45

44 "
superseded by wrought-iron, 386

beam, load at middle, Hodgkinson, 383

44 " arched girder with tie-rod, 396

" " ' 4<
tie-rod for, 396

" " 4 ' 4t form of web of, 392

" " ' "
for brick wall with three windows, ..... 394

* 4 4< 4< 4 ' load at any point of, rupture, 390

- " " middle of, 389
" "

proportion of flanges of, 386
44 " 44 "

safe distributed load, effect at any point on, . . 391
" " " " safe load at any point on 391
44 44 ' 4 " two concentrated weights on 392
44 "

girders, chapter on, 386

Ceiling of room plastered, 303
44

to be carried by roof truss, weight of, 481, 483
44

weight of, .......'-. 78

Cement grout for brick arches of floors, 345

Centennial Exposition, rolled-iron beams at, 313

Centre of gravity, load concentrated at the 60

Centres, distance from, 91

Cherry, resistance of, . . . . 120

Chestnut,
4f " 120

Chord, framed girder with loads on each 433
44 of framed girder, allowance for joints, etc., in, 445

area of uncut part of, 444
44

strains in lower 439
44 "

upper 440
41 and struts of framed girder, upper 448

"
compression in upper 445

Chords and diagonals, gradation of strains in 432, 435

of framed girders usually of wood 444

Civil Engineer and Architects' Journal, 82

Clark, moment of inertia, by Edwin 328

Clark's formula only an approximation 328

useful in certain cases, 330

Clay has but little elasticity, 211

Coefficient of strength for tubular girder, 368

Coefficients in rule for floors of dwellings, 261, 262

44 4t 4< " 4t "
first-class stores 264, 265
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Components of load on floor, 339

Compound load, assigning the symbols, 187

44 " dimensions of beam, 187
" "

general rule, 199
44 "

greatest strain from, T82

44 " maximum moment, 188

"
strain analyzed, 178

44 "
strains and sizes, 171

44 on floors, , . 339
" " "

lever, the effect of, 171, 174

strains graphically expressed, 177

Compressibility of fibres 37

Compression balances extension, 45

dimensions of parts subject to 490

graphically shown, 115

resistance to, 45
" and extension of fibres, strength, 35

" " " summed up, 228

44 4 '

tension, fibres resisting, 403
" 44 " of cast-iron, 387
" " 44

rupture by, 313

of fibres at top of beam, 42
44 44

struts, rule for, . 447, 449
44 "

application of rule, 447

in struts and chord of framed girder, 445

Rankine, Baker and Francis on, . 446
44

Tredgold and Hodgkinson on, 446

Compressive and tensile strains, 408

strain in rafter increased, 474

Computation by logarithms, example of, 311
4 ' of moment of inertia, 315

strains in framed truss by, 416
44

to check graphic strains, 132

Concave side of beam, fibres compressed at, 37, 45

Concentrated and half of distributed load equal in effect at any point, . . 162

"
load, bridging useful in sustaining, 302, 309

" " resistance of bridging to a, 308
" " location of greatest strain 181

"
loads, a series of, 155

" "
approximates a distributed load, . . . 155
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Concentrated and distributed loads, 155,179,181,182,183,274
" " "

compared, 61, 62, 63, 161

" " "
graphically expressed, 177

" " " " on beam, 252

" " "
size of beam, 182,191

" on lever, 171, 174, 255

loads, a distributed and two 184,187,191
" " " " "

three . . . 195, 197, 198, 199, 203, 292

" " middle load of distributed and three 296

Concrete and brick arches, weight of, 340

"
filling over floor arches, 345

Conflagrations resisted by solid floors, 500

Constant F for deflection, values of, Table XLIII., 562

Constants for tubular girders. 369
" " use in the rules, . .

*

499

Table XX 530, 53i

" from experiments in certain cases, 244

" how derived 505

precautions in regard to, 243

Converging forces readily determined 418

Convex side of beam, fibres extended at 37, 45

Conway and Britannia tubular bridges, 328, 367, 368

Construction defined, 27

Tredgold an authority on, 81

"
weight of the materials of, 78,261,264

weights of materials of, Table XXII., 533, 534, 535

"
in a roof, weight of the materials of, 480, 483

Cross-bridging, 303
" " assistance derived from, 308
" " dowels act as, 501

Cross-furring, . 303

Cross-section, moment of inertia proportioned to, 314

Crush, bricks liable to 346

Crushing strains, tests of woods by, 506
" " in Georgia pine, locust and white oak, Table XL., . . 559
" " "

spruce, white pine and hemlock, Table XLL, . . . 560

"
weights per inch sectional area, Table XLVI 565

Curve and tangent, point of contact defined, 179, 184

" of equilibrium is a parabola, 416
" " " stable and unstable 416
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Dangerous, beam though safe may bend and appear 235

Deflected lever, rules for size of, . , 256

Deflecting energy, 211

"
of weight on lever, 229

energies in beam and lever, .... *

251

power of concentrated and distributed loads, 252

Deflection and rupture compared, 211

excessive under rules for strength, 77

resistance to, 221

by distributed load, rule for, 255

directly as the weight, 304
" " "

extension, 214,215
" "

.

" "
length, . . 217,218

" " " " force and length, 216

total, directly as the cube of the length, 218

" " "
weight and cube of length, 219

values of constant F, Table XLIII 562

of beam, effect at bearing 121

" " formula for, 229
" " load forgiven, 245

with load at middle, 242

in floors, rate of, 240

not to be excessive, 211

to the limit of elasticity, 237,243,246,247

within elastic limit, 245

of beams not to be perceptible, 260

per lineal foot, rate of, 239, 261, 264, 267, 342
"

injurious to plastering, perceptible 260

in good floors far within the elastic limit, 239, 243
'

of beam with distributed load, 251

rule for dimensions of beam 248

of bridged beams tested, 303
" rolled-iron beams, load at middle, 331, 332

" " lever and beam compared 237
" amount of, ... t 213
"

test of, 245
" load for a given, 247

" " "
by distributed load, . 255

" "
to limit of elasticity, 247

" " " rule for, 229, 244, 256, 258
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Peflection, dimensions of lever, 251
" 4t

rules for, 250

is as the leverage, the power to resist 223

Demonstration of scale of strains 134

Depth, its value, test by experience, 33
" and length, ratio between, 240
"

relation to weight and fibres 36
"

in proportion to weight, 44
" denned for compound load, 178
"

relation to breadth, 33
"

proportional to breadth, rule, 73
" from given breadth and distance from centres, 92
" of simple Jaeams necessarily small, 402

in a beam, the importance of, 312

of beam proportioned to load, square of, 123
" " "

rule for, 248, 249
" with load distributed, rule for, 254

" " "
in dwellings, 262, 263

" " "
first-class stores, 265, 266

"
lever, uniform load, 169

" " "
promiscuous load 175

" " "
rule for, 251, 256, 257

" " framed girder, rule for, 424
"

in
" "

objectionable, 422
" and length of framed girder 422
"

to length in tubular girders, ratio of, 382

Depths analytically defined, varying 137
"

expressions for varying 141
"

demonstrated, rule for varying, 135
"

compound load on lever, scale of, 172, 173

Design for a roof truss, selecting a 481

Destructive energy, , . 47, 48, 116, 121, 151
"

its measure, 53
"

symbol of safety, 71
" and resistance, 53
"

load at any point, 57, 129
" from two weights, 133

"
several weights, 62, 66, 67

" on lever, in

power of weight and resistance of material, 68



INDEX. 585

PAGE

Diagonals, gradation of strains in chords and, 432, 435
" of framed girder, strains in the, 436

top chord and, 448

Diagram of forces described 418,419,421
" " " order of development of, 421
" " "

gradation of strains in, 433
" " "

in fra'med girder 429

Diagrams and frames, reciprocal, 418
"

correspondence of lines in frames and, ......... 462

Differential calculus, 158
"

computation by, 228

" "
strain denned by . 180,184

" " strains in lever 168

of variable, moment of inertia, 318,319, 322

Digest or directory of this work, 566

Dimensions of beam for compound load, 182,187,189
" 4t

at given point, for compound load, . ....... 189
" " load at any point, 129

" " when h equals , 190
" " h exceeds n, 191

Directory or digest of this work, , . 566

Distance from centres of beams 80, 91
"

girders, ... 94
" "

rolled-iron beams, 341, 342, 498

in dwellings, 262

rolled-iron beams, 343
"

first-class stores, 265
"

rolled-iron beams, .... 344

Distributed load, strain by the calculus, 157
"

effect at any point, . 161

" "
equal in effect at any point, concentrated and half of, . 162

" " on floors '77
" " "

beam, 75
" " deflection of beam under, 251
" "

shape of side of beam, . . . . . . 162

" " on lever, 74
"

deflection of lever by, , 255
" "

shape of side of lever, 170

on rolled-iron beam, 337
" " "

cast iron girder, . . . 389
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Distributed load on tubular girder, 368
" " "

size at any point, 372
"

.
and concentrated loads compared 61,62,63,155,161

" " " '' on beam compared, 252
" " " " " lever

"
255

' " one concentrated load, . 179, 182, 183, 274
"

graphic representation, .... 177
"

size of beam 182

" " on lever, 171, 174
" two loads, . 184, 187, 1 91, 195

size, 191
"

three .... 195, 197, 198, 199, 203, 292
" middle load, 296

Drury, testimony on loading, 82

Dwellings, load on floors of, - .,88, 340, 341
"

floor beams and headers for 495
"

rule for floors in 261

" " " headers in 271
" values of c, /. b and d in floors of, 262

" rule for solid floors of, 502

.

" hemlock beams, Table 1 508

headers, Table IX 516
"

Georgia pine beams, Table IV., 511
" " "

headers, Table XII., 519
"

spruce beams, Table III 510

headers. Table XL, 518

" white pine beams, Table II 509
" " "

headers, Table X., 517

carriage beam, precise rule, 282

" with one header 272
" " " " two headers, precise rule, ...... 292

" " " "
equidistant headers, precise rule, . . 289

" " headers and one set of tail beams. . 277
" " " " two sets " "

. 275

three "
the greatest strain at middle

header, . 298
" " "

the greatest strain at outside

header, 295

rolled-iron beams for, . 498
" Table XVIII., 526, 527
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Dwellings, rolled-iron beams for, distance from centres, 343

tie-rods for floor arches of 347

" rolled-iron headers for, 349

" " "
carriage beams with two headers and one set of tail

beams, 358

V " " " " " " headers and two sets of

tail beams, . . . 354, 356

" <4 " " " three headers, .... 360, 362

" load on tubular girders for 380

rule for
" "

380

Economical depth of framed girder, 425
" tubular '.' 382

" form of beam, . . 163

" " "
rolled-iron floor beam 312

" " " roof truss, more, 469

Elastic curve defined by writers 213

"
limit, bending in good floors far within the, 239, 243

" " fibres strained beyond the, 235
" "

important to know the, 212

44 "
in elongation of fibres, 236

" "
symbol for safety at the, 239

"
power of material, knowledge of, 244

" substance in soles of feet, 84

Elasticity are exceeded, rupture when limits of 212

defined, limits of, 212

"
for wrought-iron, modulus of, 232

" of floor, moving bodies, 84
"

possessed by all materials, 211

Elements of rolled-iron beams, Table XVII., 524, 525

Elliptic curve for side of beam, 164

Elongation of fibres 214
" " "

graphically shown, 236

English rolled-iron beams, large, 313
44

wrought iron, elasticity of, , 232

Equal weights equally disposed, 141. 143, 144, 146
4< "

general results, 146
" " strain at first weight, 147
44 " 4< " second weight 148
44 44 4t "

any weight, 150

Equally distributed safe load, rule for, 70
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Equation, management of an, 71

to a straight line, 171

Equilibrated truss, strains in an 408

Equilibrium at point of rupture, . 68

" measure of forces in 407

Equilibrium of pressures , 38
" " resistances of fibres 45
" stable and unstable 416
" three forces in 406

Error in rules on safe side, ... 183

Euclid's proposition in a triangle, 486

Excess of material by rule for carriage beam, 183

Experiment as to action on fibres 36
" on India-rubber, ; 212, 213
" " New England fir. 233
" " white pine units, 32

Experiments by transverse strain, 504

on American woods, 504
"

cast-iron, Hodgkinson, 386
" model iron tubes 369
"

side pressure . 120

."
"

tensile and sliding strains 505
"

timber, 30
"

units, conditions 32

."
"

weights of men, . 85
" "

woods, by crushing 506
" "

wrought-iron, 232
" rules useful in, . . 68

Experimental test of cross-bridging, 303

Extension and compression of fibres, strength, 35
" " summed up, 228

as the number of fibres, resistance to 222

balances compression, . . 45

directly as the area and depth, 222

.

" force 212
"

length 213

graphically shown, resistance to 221

measured by reaction of fibres, 222

of fibres 37
" "

at bottom of beam, 42
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Extension, resistance to, 45

Factory floors, load on, 78, 79

Fairbairn's experiments, 500

Fairbanks Scale Co., testing machine by 504

Falling body, the force exerted by a, 84

Feet, elastic substance in soles of, . . , 84

Females, weights of, 83

Fibres, crushed on wall, 121

"
crushing in direction -of, 506

"
elongated to elastic limit, 236

" end and side pressure on, 120

" extended or compressed 212, 214
" extension of, graphically shown,

* ... 222

" in a tie-beam, consideration of, . i . 488
" load should not injure the, 69
"

measuring extension of the, , 221

"
power of resistance as the depth, , 46

resistance as the depth of beam, 43
" " " "

leverage, 223

" "
directly as the depth, 36

" "
to change of length, 46

" " "
extension, 222

" "
horizontal strain, 43

" " side pressure, 120

"
resisting compression and tension, , . 403

"
strained beyond elastic limit, 235

"
strength due to their coherence, 35

Fire, resisted by solid timber floors 500

" wooden beams liable to destruction by, 3 12

Fireplaces, framing for 95

First-class stores, carriage beams with one header, 273

"
.

" "
floor beams, 264

" and headers, 495

" " "
rule for headers, 2 7 l

" " " formula for solid floors, 5C-3

" * load on floors, 339> 34 1

" " " " " tubular girders, 380

" " "
rule for tubular girders, 381

" * ' rolled iron beams, 495

" " " " " " distance from centres 344
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First-class stores, rolled iron headers, 350
" " " "

carriage beams with one header, .... 352

" <v " " " two headers and one set

of tail beams, . . . 359
" " " two headers and two sets

of tail beams, . . . 357
" " " " " " " " three headers, . . 361, 364
" " "

tie-rods in floor arches, 348

" " " values of c, /, b and d
y . : 265

Five equal weights, graphic strains 144

Flanges an element of strength, 313

and web, proportions between, . . .- 313

" " "
in cast-iron girders, relation of, 387

" " " moment of inertia for, . 327

in cast-iron girders, proportion of, 387

'

equal, top and bottom 314
" of cast-iron girders, proportion of, 386
" " tubular girders, construction of 374

"
equal, top and bottom 37 1

tension in lower, 370
"

for floors, area of. k . 377

minimum area of, 383

" " " thickness of, . 373

to predominate over the web, , 314

Flexure and rupture compared, 267
"

rules compared 235, 293

weights producing compared, 237

floor beams by rules based on, . . . , 77

formula for denned, 230
" moment of inertia, resistance to 3 r4

of floor beams, resistance to. 260

"
resistance to, :

221

" rules for,
242

value of F% the symbol of resistance to, 230

Floors, application of rules for strength of, 77

load on rolled iron beam 34

not always strong 29

of solid timber, Table XXI 532

1

warehouses, factories and mills, , 7&

per superficial foot, load on, 2^ r
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Floors, safe, 28

" severest tests on, 85
"

strength of, 29
" beams in, rule for, . . , . 77

" " "
test by specimens, 29

" tubular girders for, rule for, 377
"

weights of, in dwellings, 80

Floor arches, general considerations, 345
" of parabolic curve, 346

" "
tie-rods for, . . . ^ . . 346

" " " " area of cross-section of, 347
" " " " where to place 348
"

beams, general rule for, , 89, 92
" "

bridged 302
" " nature of load on, 78

" load on, rule for, 78
" "

of dwellings, modified rule for, 2bi

" resistance to flexure of, 260
" " stiffened by bridging, 310
" " stiffness of, rule for 260

" of wood, Tables of, 496
" " " and iron, Tables of, 495

" " "
iron, distance from centres, 341

" " Georgia pine, for dwellings, Table IV 511
" " " '

first-class stores, Table VIII., 515
" " hemlock, for dwellings, Table I., 508
" ' "

first-class stores, Table V., 512
" "

spruce,
"

dwellings, Table III 510
" " "

first-class stores, Table VII., 514
" " white pine, for dwellings, Table II., 509
" " " " "

first-class stores, Table VI., . 513

bridging tested, 303
" "

openings, carriage beams, 195, 196
" "

planks, their weight, 79

Force exerted by a falling body, 84

and frame diagrams correspond, lines of, 462

Forces and lines in proportion, 405

described, diagram of, 418, 419, 421
"

in a framed girder, 428
" " "

truss, graphically shown, 417



592 INDEX.

PAGE

Forces shown by a closed polygon, 418

Force- diagram, example of constructing a, ?.;..., 483
"

= for a roof truss, . . . . . 461, 462, 463, 465, 466, 468, 469, 472
"

.
** form a closed polygon, lines in a, 485
"

line of weights for a, 464, 466
" " of a roof, measuring the, 485
" " of an unsymmetrically loaded girder, 455
" " scale of weights in a, 483
"

diagrams, strains in trusses compared by, 469

Form of beam for distributed load, 162

" *" lever
" "

171
'" " " "

compound
"

173
" " iron beam, economical 312

Formula, comparison of F with E of common, . , 232
"

for resistance to flexure, , 232
"

solid floors, , 502
' " "-

reduction, 501
"

management of a, 89,90
"

practical application, , 71

Four equal weights, graphic strains, 143

Frames and diagrams, reciprocal, 418

Framed girder, allowance for joints, etc., in chord, 445
" " area of imcut part of chord, 444

"
bearings of metal for struts, 450

"
compression in chord and struts, 445

"
compromise of objections, 423

cost inversely as the depth, ... , 423
"

diagram offerees in, 429
" economical depth, 425
'* forces in, 428
" horizontal thrust in, 403
'*

irregularly loaded, 451
'*

its relation to a beam 402

liable to sag from shrinkage, 450
" minimum of strains in, , 426
" number of bays or panels, 425,428
"

peculiarity in strains of, 432
"

proportions of, .- 422
"

resistance to tension in, 443
" rule for depth, 424

" " series of triangles in, . 425
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Framed girder, strains in diagonals of, 436
44 " " " lower chord of, 439

" "
upper

" "
440

" "
system of trussing in, . . t 425

41 "
top chord arid diagonals of, 448

tracing the strains in, 437

trussing in, . . . . . .

'

417,425

unequal reactions of supports of, 451

with loads on each chord, . 433

wrought-iron ties, in 443
"

girders, chapter on 402

compression in, rule for, 447
"

usually of wood, chords of 444

truss, reaction of supports of, 415

France, testing bridges in 82

Francis on compression of materials 446

Funicular or string polygon, 408

Furniture reduces standing room, 88

Galileo's theory of the transverse strain, 36

Geometrical approximation to moment of inertia, 315

series of values of strains, 476

Georgia pine, resistance of, 120, 121

"
beams, their weight, 79

41
floor beams and headers, 495

"
coefficient of in rule, 261,265

German rolled-iron beams, large, 313

Girder defined, rule, 94
"

history of tubular iron, 367
"

plate and jolled-iron, compared with tubular, 367

Girders, distance between, , 94
" headers and carriage beams 94

Graphic representation of strains, 127
"

strains checked by computations, 132
" " from two weights 133

" three
"

138
" " " ' 4

equal weights, 141
" four "

143

Graphical representations,
' in

of compound loads, . 177
" " of moment of inertia, 321
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Graphical strain at any point, . '. 127
"

strains in a beam 114
" " " double lever, 113

Graphically shown, horizontal strains 406
" resistance of fibres 223

Gravity, its prevalence, 27

load concentrated at centre of, 60

Greatest load on floor, 80

Hatfield's, R. F., clock-work motion, 504

Headers, definition, 95
" load upon, . 96, 196
" allowance for damage to. 97
" formulas for 96, 97
11 " " tables of, 497
" ' " breadth of 270

" and trimmers 266

" wooden floor . 495
" rolled-iron floor 349
*'

for dwellings and assembly rooms, 271

" " " " rolled-iron 349
" "

first' class stores, 271

" " " " " rolled-iron 350
'*

carriage beams and girders, 94

". in carriage beam, two 104

" one set of tail beams and two 106

"
carriage beam with three 200

" of wood, Tables of, . . 497
"

Georgia pine, for dwellings, Table XII 519
" ' " "

first class stores, Table XVI 523

" hemlock, for dwellings, Table IX 516
"

first-class stores. Table XIII 520
"

spruce, for dwellings. Table XI 518
"

first class stores, Table XV 522

white pine, for dwellings, Table X 517
"

first-class stores, Table XIV., 521

Hemlock, coefficient in rule for, 261, 265

Hemlock, resistance of, 120, 121

beams, their weight, 79

floor beams and headers 495

Hickory, resistance of, 120
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History of the rolled-iron beam 3 T 3

V " tubular iron girder, 367

Hodgkinson on compression of materials 446

Hodgkinson's edition of Tredgold on Cast-iron, -
. 386

experiments, . .'.... 50

" rule for cast-iron, load at middle 388

" "set" in testing, , , . . 55
value of elasticity of iron, 232

Hoes' foundry, weight of men at 85

Homologous triangles, proportions by 487

Hooke's contribution to the science 37

Horizontal and inclined ties compared, strains in 472

strain in roof truss, . 466,473,474
" " resisted by iron clamps 489
"

strains in framed girders, 439, 440, 441, 443
" " measured arithmetically, , 412
" " shown by bent lever, 42
" " "

graphically, 406
" thrust in a framed girder 403
"

tie, raise wall of building to get 478

Hypothenuse of right-angled triangle 486

Important work should be tested, materials in 244

Inclined tie-rod of truss, enhanced strain, 477

Increased strains in roof truss from inclined tie, 474, 478

Index of strength for unit of material. 48

India-rubber, experiment on, 212

" "
largely elastic, 211

Infantry, space required for, .,.......' 83

Infinite series, sum of an, 476
" " value of coefficient, 227

Infinitesimally small, differential is , . 318, 319

Insurance offices, load on tloor of, 340, 341

Integral of moment of inertia, . . . , , 319
"

calculus, maximum ordinate, 180, 184

Integration, computation by, 228

" rule for strain in lever by 169
"

strain by, 159

Iron a substitute for wood 312
"

bolts and clamps for tie-beam, 489
" load upon wrought, 99
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Iron beam, load at middle upon, 331, 332, 333
" "

progressive development of, 312

Jackson's foundry, weight of men at, 85

Kirkaldy's experiments, 500

Laminated and solid beams compared 34

Lateral thrust by cross-bridging, 303

Lead has but little elasticity, 211

Leibnitz's theory of transverse strains 37

Length and weight, relation between, 65

" "
depth, ratio 240

" of beam, rule for 248, 249
"

'.'
" with load distributed, rule for, 253

" " " in dwellings, . 262, 263
" " " "

first-class stores, . 265,266
" "

rolled-iron beam, load at middle, 331, 332
" "

lever, rule for, 250, 256, 257
" and depth of framed girder, 422
"

to depth in tubular girder, ratio of, 382

Lever and beam compared, 244

deflection in 237
" " " "

i strength
"

55

symbols
"

49
" arms in. inverse proportion as the weights, 39
"

at limit of elasticit)', load on 248
"

by distributed load, deflection of 255

deflection in a, 213

destructive energy in a. , 55,111
" dimensions of a deflected, 251
"

distributed load on rolled-iron, 338
"

effect of weight at end of, 47

formula for deflection in a, 229
" modified to apply to a, 54

"
graphical strains in a double, 113

load at end of rolled-iron, 336

principle in transverse strains, 38

demonstration 39

effect of several weights, 62
"

unequal weights, 39
"

promiscuously loaded, 175

depth of, . ... 175
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Lever, rule for deflection of, 244
" " resistance of, 48

" " "
strength

"
55

" rules for dimensions of deflected, 250,256
" safe load, rule, 70

" distributed load, rule, 70
"

shape of side of 123
"

shaped as a parabola, 124
"

showing elongation of fibres, , 236
"

strains like two weights at ends, 45
" measured by scale, in

symbol showing strength of, 47
"

test of deflection in a, 245
"

to compression, resistance of fibres of . 228

44 " extension . . 228

."
"

limit of elasticity, deflection of, 247
"

uniformly loaded, strains in, 168

4 ' values of P, n, b, d and d in a, 250
" "

U, n, b, d " 6 " '

256
41

effect of weight at end of, , . . 58

." with compound load, strain in and size of, . 171
" "

distributed load, the form a triangle, 170
" 4 '

unequal arms, strain in, 127
" "

uniformly distributed load, 74

Leverage, arm of, 47

capacity of tubular girder by, 369, 370

graphic representation, in
resistance of fibre is as the, 223

Light-well in tier of floor-beams, 201

Light-wells, carriage beams, 195, 196, 198
" "

framing for, . 95

Lignum-vitae, resistance of, 120

Limit of elasticity, . . 212,213,235
" "

.

" deflection to the, 237, 243
" " "

in floor beam, . 264

load on beam at, 246
" 4 ' 4t " ". lever

"
248

strain beyond the 313, 315
" " "

testsofthe, 505

Limited application of formula for value of h in carriage beam, .... 181
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Lines and forces in proportion 405

Live load, measurement of a, .*.>.. . , . 80

" "
weight of people, . . 84

Load and strain, various conditions ....:.... in
'

at limit of elasticity in a beam ...,,,, 246
" "

any point, effect on beam, . ,
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dwellings, etc., load on, 380



6l8 INDEX.

PAGK

Tubular iron girder, for dwellings, etc., rule for, 380
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.
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Von Mitis, testimony as to load on bridges, 82

Wade's experiments, Major 500

Wales, tubular bridges of, 367, 368

Walker, James, testimony on loading 82

Walls, bearing surface of beams on 121

of building raised to permit horizontal tie, 478

pushed out for want of tie, 404

Walnut, resistance of, 120

Warehouse beams to resist rupture, 260

load on floors of 78, 79, 339

Web, moment of inertia for the 327
" and flanges, proportion between 313
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"
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White pine, coefficient in rule for 261, 265

resistance of, 121

"
experiment on units of, 32

beams, weight of, 79
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ANSWERS TO QUESTIONS.

37. Transverse.

38. In proportion directly as the breadth.

39. In proportion directly as the square of the depth.

4-0. The elements are the strength of the unit of mate-

rial, the area of cross-section and the depth.

The expression is R = Bbd'.

41. The amount is equal to the total load.

42 One half.

43. The sum is equal to the total load.

44. The portion of the weight borne at either point is

equal to the product of the weight into its distance from the

other support, divided by the length between the two sup-

ports.

45. R = W~

*e.-p = w^
47. 10000 pounds.

5000 pounds.

48. The moment, or the product of half the weight into

half the length of the beam.
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49 Wl = Bbd*.

50. 22666! pounds.

51. As many times as the breadth is contained in the

depth,

62. 22781^ pounds.

63. 40500 pounds.

64. 20250 pounds.

65. 5062^ pounds.

84. Depth, 6-6 inches; breadth, 3-3 inches.

85. 5-24 inches square.

86. 6-93 inches.

87. 4 inches.

126. 2 feet lof inches.

127. 2 feet 4^ inches.

128. 2 feet ;| inches.

129. 2 feet if inches.

130. i foot 8f inches.

131. i foot u|- inches.

132. 2 feet o inches.

133. i foot 7f inches.

134. i foot 9! inches.

135. 3 feet i inch.

160. Breadth, 6-78 inches; depth. 12-34 inches.

161. 2-94 inches.
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162. 2-86 inches.

163. 0-291! inches.

164. 1-763 inches.

165. 1-244 inches.

166. 3- 1 ii inches.

179. 36720 foot-pounds.

180. 36-72 inches.

(81. Ordinates. Strains.

For 5 ft., 18-36 18360 foot-pounds.
" 6 "

22-032 22032
" "

"
7

"
25-704 25704

"

"
8

"
29-376 29376

"
9

'"

33-048 33048
"

182. 10-733, 10-182 and 9-6 inches respectively.

183. 6-245, 8-062, 9-539 and 10-198 inches respec-

tively.

184. Depth, 8-1565 inches.

Weight, 652-218 pounds.

Shearing- strain at wall, 733 783 pounds.
" " "

5 ft. from wall, 699-798 pounds.

185. 302-222 pounds.

186. Shearing strain, 4973! pounds.

Height, o93i inches.

187. 1-46 inches.

204. io666| pounds.

205. 2666f, 5333^ and 8000 pounds.

206. Strain at A, 17142!; at /?, 22285^.
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207. 8571!, 7428f and 21000 pounds respectively.

208. 12750, 22750, 19000, 8500, 9500, 20500 and 21500

pounds respectively.

209. 3920 pounds.

217. A parabolic curve.

218. 800, 1050 and 1200 pounds.

219. 5 1087 inches.

220. Elliptical

228. o, 300, 600, 900 and 1700 pounds.

At the wall 2500 pounds.

229. A parabolic curve.

230. 1250 pounds.

231. Triangular.

232. 3450, 6250 and 9450 pounds.

233. 200, 1600, 6150 and 11050 pounds.

269. 19200 pounds; located at the concentrated

weight.

270. 7-01 inches.

287. Resistance to flexure.

288. To any amount within the limits of elasticity.

289. The extensions are directly as the forces.

290. The deflections are directly as the extensions.

291. The deflections are as the weights into the cube of

the lengths.

307. By the power of reaction.
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308. To the number of fibres, to the distance they are

extended, and to the leverage with which they act.

309 Wl s = Fbd'd.

3(0. 0-266 of an inch.

315. The rules for strength are the more simple.

3(9. r--
a

354.-Formulas (122.), (124.), (125.), (126.) and (120.).

355. Formulas (123.), (127.), (128.), (129.) and (121.).

356. Formulas (131.), (132.), (133.), (134.) and (135.).

357. Formulas (136.), (137.), (138.), (139.) and (140.).

437. 12-345 inches.

438. 4-176 inches.

439. 7-700 inches.

440. 8-417 inches.

441. 10-779 inches.

442. 9-530 inches.

537. -fabd* (form. 205.).

538. &(bd'-b ld!
r

) (form. 213.).

539. The Buffalo I2j inch 180 pound beam.
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540. 9475-58 pounds.

541. 2004-52 pounds.

542. The Pottsville io| inch 90 pound beam.

543. Two 12 inch 170 pound beams.

544. It should be a 15 inch 200 pound beam.

545. A Paterson or Trenton io inch 135 pound beam.

574. 41^ inches.

575. 35 inches.

576,, At 5 feet from the end of girder, 15 inches each
;

" 10 " " ' " " "
26f

" "

..

I5
M U .* M

35
" 20 " " " " " "

40
<; "

"
25

" or at middle, 4if
<; "

577. At end of girder, 0-38 inch;

5 feet from end of girder, 0-30
"

-
15

-
0-15

"

" 20 " " " " " 0-08
"

25
" or at middle, o-o "

578. At 5 feet from end of girder, 8-95 inches;
" 10 " " " "

15-34
"

15
" " " " "

19.18
" 20 " or at middle, 20-46

579. 4-2155 feet.

597. Bottom flange, 16 X2-I95 inches;

Top 5^x1-646

Web, 1-372
u thick.
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598. Bottom flange, 16 x 1-646 inches;.

Top Six 1-234

Web, 1-029 thick.

599. Bottom flange, 16 x249 inches;

Top
"

Six 1-867

Web, I-556
" thick.

600. 32-99 inches.

601. -^-At the location of the 25000 pounds ;

The bottom flange, 16 x 1-663 inches;
"

top si x i - 247
"

web, J-039
" thick.

At the location of the 30000 pounds ;

The bottom flange, 16 x 1-588 inches;
"

top
"

Six 1-191
"

web, 0-992
" thick.

602. 3-68 inches.

651. The strain in AB is 3550 pounds;
" " BC " 10280

" " AF "
15240

" u
10130

652. 7-8125 feet.

653. Six.

654-. The strain in DE is 3600 pounds ;

" CD "
5425

"

"
14500

2I72
,

At/ "
15700
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The strain in S is 41800 pounds;
" " BL "

26125
" DM "

39200

655. The strain in DE is 3614 pounds;
" CD "

5420
" BC "

12647
" AB "

14454
"

AT-4 "
21681

" AU "
15655

" " " CT 35223
" ES "

41746

26091
"

39 r 37

656. The area at ^ f/ should be 16-103 inches;

36-180

42-872
The size of BL 6 - 626 x 7 -

95 1 inches
;

" " " DM "
7-715x9.258

3-004x3-605
"

4-612x5.534
<{

5.651x6-781
"

The area of CZ> "
0-603 inches;

" " " AB " " 1-611

688. The computed strain in ^(^ is 22535 pounds;
" BH " 18028
" ^4^ "

4507
" AF 18750

" " " " ^r u
15000

"

" measured " " AG "
22500

'

" 18000 *

"
4500

"
18750

"
15000
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689. The strain in AN is 44200 pounds ;

" BO "
38720

< t

29160
u

"
5400

CD "
13300

^Jfcf
"

36760

6Z "
32240

BC " loooo

DE "
26320

690. The strain in AJ is 41000 pounds;
" BK "

36150
" u " AB "

4950
" AH "

32400
" BC 4<

24700
"

14500
"

691. The strain is 16000 pounds.

692 Six.

That shown in Fig. 115.

The strain in AO is 96200 pounds:
Bp 88200 "

" C/7 "
53000

" CQ "
25700

44 DR "
17600

" " " ^^? " 8000
" " CD " 8000

" 81600 "

"
74800

DE " 10200 "

"
24700

"
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AO should be g
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